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1 t-SNE

Maaten, L. van der, & Hinton, G. 
(2008). Visualizing Data using t-SNE. 
Journal of Machine Learning 
Research, 9(Nov), 2579–2605. 
Retrieved from http://www.jmlr.
org/papers/v9/vandermaaten08a.html

input data, or 
high-
dimensional 
feature space model-agnostic

non-linear transformation of high-
dimensional space to 2D visualization 2D visualization clustering data point as clusters dimensional reduction

visual inspection; multiple dataset 
comparison with other methods

2 UMAP

McInnes, L., Healy, J., & Melville, J. 
(2018). UMAP: Uniform Manifold 
Approximation and Projection for 
Dimension Reduction. Retrieved from 
http://arxiv.org/abs/1802.03426

input data, or 
high-
dimensional 
feature space model-agnostic

non-linear transformation of high-
dimensional space to 2D visualization 2D visualization clustering data point as clusters dimensional reduction

visual inspection; computation 
comparison with other methods 
(runtime, scaliblity with embedding 
space, sample points)

3 iBCM

Kim, B., Glassman, E., Johnson, B., 
& Shah, J. (2015). iBCM: Interactive 
Bayesian Case Model Empowering 
Humans via Intuitive Interaction. 
Retrieved from www.csail.mit.edu

cluster label, 
likelihood of 
prototypes and 
subspaces

clustering 
method

interactive bayesian case model, user-
defined clustering user-defined clustering clustering; prototype prototype

show prototype and its 
features highlighted

user study, real-world 
implementation

4 TCAV

Kim, B., Wattenberg, M., Gilmer, J., 
Cai, C., Wexler, J., Viegas, F., & 
Sayres, R. (n.d.). Interpretability 
Beyond Feature Attribution: 
Quantitative Testing with Concept 
Activation Vectors (TCAV). Retrieved 
from https://arxiv.org/pdf/1711.11279.
pdf

user defined 
examples 
containing 
pos/neg 
concepts; query 
images

CNN; 
classification

get the decision boundaries and its 
perpendicular vector as the CAV; the 
directional derivitative of a class training 
image is the TCAV

concept activation vector 
(showing the global class 
concept); measured as 
TCAV score (0-1) concept

catagorical concepts, each 
quantified [0,1]

bar chart comparing different 
concepts; 

simulation experiment; user test w/ 
lay person and doctors

5 TCAV

Cai, C. J., Reif, E., Hegde, N., Hipp, 
J., Kim, B., Smilkov, D., … Cor-Rado, 
G. S. (n.d.). Human-Centered Tools 
for Coping with Imperfect Algorithms 
During Medical Decision-Making, 14. 
https://doi.org/10.1145/3290605.
3300234

CNN; image 
retrieval

A application using TCAV and CBIR for 
medical decision support concept

catagorical concepts, each 
quantified [0,1]

a slider bar to control the 
degree of concept

mixed method user study w/ 
pathologist

6 network dissection

Bau, D., Zhou, B., Khosla, A., Oliva, 
A., & Csail, A. T. (n.d.). Network 
Dissection: Quantifying 
Interpretability of Deep Visual 
Representations. Retrieved from http:
//netdissect.csail.mit.edu

dataset with 
segmentation 
map; model 
with parameters CNN; post-hoc

quantify the interpretability by aligning units 
in CNN with semantic concepts 
(segmentation)

score the semantics 
(ofobjects, parts, scenes, 
textures, materials, and 
colors) of hidden units at 
each intermediate 
convolutional layer. more for 
network analysis concept concept quantification

showing semantic concepts 
for individual units, and the 
layers in total.

quantify the interpretability among 
layers and networks

7 net2vec

Babiker, H. K. B., & Goebel, R. 
(2017). An Introduction to Deep 
Visual Explanation. Retrieved from 
http://arxiv.org/abs/1711.09482

training images; 
model 
parameters post-hoc; CNN

study what information is captured by 
combinations (rather than individual) of 
neural network filters; formulate concept 
vectors as embeddings. theoretical analysis 
work, not explicitly for explanation

best filter for concept; and 
their learned weights (as 
concept embeddings) concept

filters in CNN, and their 
weights

visualize the fillters of 
concepts, and their 
combined weights

quantify the filter-concept overlap 
w/ gt segmentation IoU

8 obj detector emerge

Zhou, B., Khosla, A., Lapedriza, A., 
Oliva, A., & Torralba, A. (2014). 
Object Detectors Emerge in Deep 
Scene CNNs. Retrieved from http:
//arxiv.org/abs/1412.6856

CNN 
parameters; 
dataset w/ 
segmentation 
map to show 
accuracy

post-hoc; CNN; 
classification

visualize the unit in NN by projecting the 
receptive field, 
minimal image representations.

mask overlay on multiple 
input image showing the 
area the unit detects

concept; feature 
attribute

showing example images w/ 
masks receptive field of 
detect area

compare receptive field object 
detection w/ gt segmentation

9

Comparison-Based 
Inverse 
Classification

Laugel, T., Lesot, M.-J., Marsala, C., 
Renard, X., & Detyniecki, M. (2018). 
Comparison-Based Inverse 
Classification for Interpretability in 
Machine Learning. In J. Medina, M. 
Ojeda-Aciego, J. L. Verdegay, D. A. 
Pelta, I. P. Cabrera, B. Bouchon-
Meunier, & R. R. Yager (Eds.), 
Information Processing and 
Management of Uncertainty in 
Knowledge-Based Systems. Theory 
and Foundations (pp. 100–111). 
Cham: Springer International 
Publishing.ational Publishing. https:
//doi.org/10.1007/978-3-319-91479-4

input-output 
pairs

agnostic; 
classification

growing sphere: The method first draws a 
sphere around the point of interest, 
samples points within that sphere, checks 
whether one of the sampled points yields 
the desired prediction, contracts or 
expands the sphere accordingly until a 
(sparse) counterfactual is found and finally 
returned. They also define a loss function 
that favors counterfactuals with as few 
changes in the feature values as possible. 

changed feature and its 
value w.r.t to the query 
instance

counterfactual instance; 
counterfactual

featurs and its new changed 
values, counterfactual 
prediction, query instance

show the instance if it's 
interpretable (image, text, 
tabular not too large) and the 
what-if changes in the 
featurs, and the 
counterfactual prediction functional eval; case study

10 CNN to DT

Zhang, Q., Yang, Y., Ma, H., & Wu, 
Y. N. (2018). Interpreting CNNs via 
Decision Trees. Retrieved from http:
//arxiv.org/abs/1802.00121

intrinsic 
explanable 
model intrinsic

semantic and quantatitive explanation. 
decomposes feature representations in 
high conv-layers of
the CNN into elementary concepts of object 
parts in the decision tree. The decision tree 
tells people which object parts activate 
which filters for the prediction and how 
much they contribute to the prediction 
score. decision tree decision tree

semantic part outlined in the 
input image; the decision 
tree

node-link tree, show 
examples for the leaf

metrics (errors of object-part 
contributions, 
fitness of contribution distributions). 
accuracy of decision tree

11 kNN

k nearest neighbors, non-parametric, 
generative, supervised classification 
algorithm training data intrinsic

find the k nearest neighbors for the query 
instance

class label and its nearest 
neighbors example raw input

show raw input and its 
neighbors any input type

12 SHAP

Lundberg, S. M., Allen, P. G., & Lee, 
S.-I. (n.d.). A Unified Approach to 
Interpreting Model Predictions. 
Retrieved from https://github.
com/slundberg/shap

input features 
(super pixel; 
bag of words)

agnostic or 
specific

additive feature importance measure 
unifying (LIME, DeepLIFT, Layer-wise 
relevance propagation; shapley value 
estimation); assign each feature an 
important value for a prediction unclear... feature attribute

input feature level 
importance score

color code the attribute, 
show contrast features 
(remove feature to change 
classes) function and human test
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13

Interpretable 
Classifier for 
Diabetic 
Retinopathy 
Disease Grading

de la Torre, J., Valls, A., & Puig, D. 
(2017). A Deep Learning 
Interpretable Classifier for Diabetic 
Retinopathy Disease Grading. 
Retrieved from http://arxiv.
org/abs/1712.08107 query image

CNN; 
classification

decompose the score from one layer as 
from input and the layer constant, using 
deconv a scoring system feature attribute

input feature level 
importance score

feature score at each layer 
for each class; and pixel-
wise score

function eval and visual inspection, 
not thoroughly.

14 LIME

Ribeiro, M. T., Singh, S., & Guestrin, 
C. (2016). Why Should I Trust You?: 
Explaining the Predictions of Any 
Classifier. Retrieved from http://arxiv.
org/abs/1602.04938

sampling local 
instances; 
super pixel as 
iamge features, 
and bag of 
words as text 
features agnostic

perturbation-based, weighted sampling 
around the local query instance, and fit a 
linear model at local

pertubation-based, support 
what-if by modifying feature 
values; depending on the 
explain function (linear, 
decision-tree, rule). In the 
paper they use sparse linear 
model. feature attribute

input feature level 
importance score

image mask showing 
important superpixel; bar 
chart showing important text 
features

simulate gt features to test fieldity; 
test user for trustworthiness

15 EXPLAIN

Robnik-Sikonja, M., & Kononenko, I. 
(2008). Explaining Classifications For 
Individual Instances. IEEE 
Transactions on Knowledge and Data 
Engineering, 20(5), 589–600. https:
//doi.org/10.1109/TKDE.2007.190734 any data type agnostic

pertubation-based, 
computes the influence of a feature value 
by observing its
impact on the model’s output.

information difference 
measure for each features feature attribute

neg/postive important score 
at input feature level [-1, 1]

bar chart (-1,1) for each 
features simulation experiment for fieldity

16

IME/SHAP 
(Shapley Additive 
Explanations)

Erikštrumbelj, E., & Kononenko, I. 
(2010). An Efficient Explanation of 
Individual Classifications using Game 
Theory. Jmlr ’10, 11, 20. Retrieved 
from http://www.ailab.
si/orange/datasets.psp. input features agnostic

pertubation-based, capture interactions 
between features. to reduce the 
computation, use game theory to 
approximate. generate global feature 
importance via game theory feature attribute feature attribute

neg/postive important score 
at input feature level [-1, 1]

bar chart pos/neg (-1,1) for 
each features

functional eval (fieldity, run time); 
qual (show explain expamples)

17 RISE

Petsiuk, V., Das, A., & Saenko, K. 
(2018). RISE: Randomized Input 
Sampling for Explanation of Black-
box Models. Retrieved from http:
//arxiv.org/abs/1806.07421

input-ouput 
pairs; input is 
sampled using 
random masks agnostic

pertubation-based; probe the black-box 
model by sub-sample the input by using 
random masks, and use the output as 
weights for the masked input important map feature attribute

input feature level 
importance score saliency map

functional eval (insertions, deletion, 
pointing game accuracy)

18

Learning Global 
Additive 
Explanations

Tan, S., Caruana, R., Hooker, G., 
Koch, P., & Gordo, A. (2019). 
Learning Global Additive 
Explanations of Black-Box Models. 
https://doi.org/10.1145/nnnnnnn.
nnnnnnn

input-output 
pairs; input 
features, need 
to be semantic 
meaningful so 
that users can 
interprete agnostic

distill a student global addictive model from 
original teacher model. create explanation 
by examining the individual featuer shape 
w.r.t output plot.

feature shapes of a base 
func describes the 
relationship between 
featreus and predictions. feature attribute

feature shape (from a base 
func) ploting the relationship 
between a feature and the 
output (may be non-linear)

visualize the feature shape 
wrt prediction (since each 
feature is addictive 
relationship with prediction); 
vis is suitable for ML experts, 
not very interpretable for end 
users. Need to adopt to 
simpler visualization.

functional eval (designing ground-
truth explanations); user study with 
ML experts (time, capture gt 
features, demand, catch data error) 

19

GA2M (Generalized 
Addictive Models 
plus Interactions)

Lou, Y., Caruana, R., Gehrke, J., & 
Hooker, G. (n.d.). Accurate Intelligible 
Models with Pairwise Interactions. 
Retrieved from http://www.cs.cornell.
edu/~yinlou/papers/lou-kdd13.pdf

input-output 
pairs agnostic

based on GAM (generalized addictive 
model) with added interaction terms of two 
features

GAM and important paired 
feature interactions feature attribute

feature shape, paired feature 
interaction

line plot for feature shape, 
2D heatmap for feature 
interaction

fidelity, case study showing the 
visualization

20

LRP (layer-wise 
relevance 
propagation)

Bach, S. et al. On pixel-wise 
explanations for non-linear classifier 
decisions by layer-wise relevance 
propagation. PLoS ONE 10, 
e0130140 (2015).

model, weights, 
activation

neural network, 
post-hoc

it identifies important pixels by running a 
backward pass. The backward pass is a 
conservative relevance redistribution 
procedure, where neurons that contribute 
the most to the higher-layer receive most 
relevance from it. 

pixel-level feature 
importance score feature attribute feature importance score

color code on top of the input 
image

visual inspection; flipping 
experiment

21 DeepLIFT

Shrikumar, A., Greenside, P., & 
Kundaje, A. (2017). Learning 
Important Features Through 
Propagating Activation Differences. 
Retrieved from http://arxiv.
org/abs/1704.02685

model, 
activation, 
weights

neural network, 
post-hoc

compares the activation of each neuron to 
its ‘reference activation’ and assigns 
contribution scores according to the 
difference

pixel-level feature 
importance score feature attribute feature importance score

color code on top of the input 
image; code the importance 
using size on DNA data

ablation test on pixel for importance 
score; visual inspection

22 CAM

Zhou, B., Khosla, A., Lapedriza, A., 
Oliva, A., & Torralba, A. (n.d.). 
Learning Deep Features for 
Discriminative Localization. Retrieved 
from http://cnnlocalization.csail.mit.
edu

model 
parameters; 
query image

CNN with GAP 
layer

weighted sum of activation maps; the 
weights are from GAP(global average 
pooling) layer pixel-level importantce score feature attribute pixel-level importantce score

color coded the importance 
score on spatial input data

accu, localization ability, visually 
show the results

23
Grad-CAM & 
Guided Grad-CAM

Selvaraju, R. R., Cogswell, M., Das, 
A., Vedantam, R., Parikh, D., & 
Batra, D. (2016). Grad-CAM: Visual 
Explanations from Deep Networks via 
Gradient-based Localization. 
Retrieved from http://arxiv.
org/abs/1610.02391

model 
parameters; 
query image

post-hoc; CNN 
model family

weighted sum of activation maps, the 
weights are from the graidents of output w.
r.t the actv maps pixel-level importantce score feature attribute

pixel-level importantce score; 
also support counterfactual 
explanations, by negating 
the gradient of target class

color coded the importance 
score on spatial input data 
(not limited to images)

user study for class discrimination, 
trust. analyze failure modes 
adversarial noise, bias.  

24 SmoothGrad

Smilkov, D., Thorat, N., Kim, B., 
Viégas, F., & Wattenberg, M. (2017). 
SmoothGrad: removing noise by 
adding noise. Retrieved from http:
//arxiv.org/abs/1706.03825

sample on the 
query image by 
adding noise; 
trained model CNN; post-hoc

sample similar images by adding noise to 
the image, then take the average of the 
resulting sensitivity maps saliency map feature attribute pixel-level importantce score

visualize saliency map; also 
visualize the difference of 
saliency map for top two 
class predictions, as a 
contrast explanation (or any 
sensitive analysis/feature 
attribute based method can 
do so), but not very intuitive 
(may need vis design)

visual inspection, compare w/ other 
grad based methods

25
PattenNet and 
PatternAttribute

Kindermans, P.-J., Schütt, K. T., 
Alber, M., Müller, K.-R., Erhan, D., 
Kim, B., & Dähne, S. (2017). 
Learning how to explain neural 
networks: PatternNet and 
PatternAttribution. Retrieved from 
http://arxiv.org/abs/1705.05598

model 
parameters; 
input and its 
target output post-hoc

disentangle the signal and weights that 
forms the predictions feature attribute feature attribute

feature-level importance 
score

color coded the importance 
score on spatial input data 
(not limited to images)

signal estimator quality measure; 
image degradation experiment; 
visual inspect with other methods
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26
right for the right 
reasons

Ross, A., Hughes, M. C., & Doshi-
Velez, F. (n.d.). Right for the Right 
Reasons: Training Differentiable 
Models by Constraining their 
Explanations. Retrieved from https:
//github.com/dtak/rrr. input post-hoc

align gradient-based method with 
pertubation-based method, since 
pertubation methods are computational 
expensive; input gradient explanations 
match state of the art sample-based
explanations; optimize the classifier to learn 
alternative explanations. feature importance feature attribute

feature positive/negative 
attribute visual comparion w/ LIME baseline

27 Distill-and-Compare

Tan, S., Caruana, R., Hooker, G., & 
Lou, Y. (2018). Distill-and-Compare: 
Auditing Black-Box Models Using 
Transparent Model Distillation. https:
//doi.org/10.1145/3278721.3278725

audit data (not 
necessaryly 
training data); 
gt; black-box 
model agnostic

compare the student model trained with 
distillation to a second un-distilled 
transparent model trained on ground-truth 
outcomes, and use differences between the 
two models to gain insight into the black-
box model

use iGAM as transparent 
model in the paper; feature 
contributions feature attribute

in the form of GAM or tree 
(depending on the 
explanatory model used) fidelity of the mimic model

28
deep visual 
explanation

Babiker, H. K. B., & Goebel, R. 
(2017). An Introduction to Deep 
Visual Explanation. Retrieved from 
http://arxiv.org/abs/1711.09482

model; query 
image CNN

transform the activation map in Fourier 
domain, and convert back to get the 
saliency map saliency map feature attribute saliency map

visual inspect w/ other saliency 
map method

29 Prospector

Krause, J., Perer, A., & Ng, K. (n.d.). 
Interacting with Predictions: Visual 
Inspection of Black-box Machine 
Learning Models. https://doi.org/10.
1145/2858036.2858529

input-output 
pairs agonostic

an interactive visual analytic system based 
on partial dependence plot

partical dependence of 
features for global and 
individual explanation feature attribute feature shape color bar; line chart

case study on predicting diabetes 
on EHR w/ data scientists

30

Individual 
conditional 
expectation plot 
(ICE)

Goldstein, A., Kapelner, A., Bleich, J., 
& Pitkin, E. (2013). Peeking Inside 
the Black Box: Visualizing Statistical 
Learning with Plots of Individual 
Conditional Expectation. Retrieved 
from http://arxiv.org/abs/1309.6392

input-output 
pairs agnostic

based on the partial dependence plot, and 
graph the functional relationship between 
the predicted response and the feature for 
individual observations. It suggests where 
and to what extent heterogeneities might 
exist.

feature shape for individual 
data point feature attribute

feature shape for individual 
data point

line and scatter plot for each 
individual data point, 
showing the heterogeneity of 
the effects

visual test for addictivity; simulated 
and real data inspection

31
VIN (Variable 
interaction network)

G. Hooker. Discovering additive 
structure in black box functions. In 
Pro- ceedings ofthe tenth ACM 
SIGKDD international conference on 
Knowl- edge discovery and data 
mining, pp. 575–580. ACM, 2004

input-output 
pairs agnostic

features are displayed in a
stylized network graph in which 
connections indicate the presence of an 
interaction. This method is notable for its 
ability to efficiently identify interactions 
including 3 or more terms. The interactions 
are identified by an algorithm that uses a 
permutation method similar to feature 
importance scores [6] to identify features 
whose effect changes in the presence or 
absence of a potential interactor feature. 
The algorithm then cleverly prunes the 
search space by using the property that an 
interaction effect can only exist if all the 
lower-order effects that involve its feature 
also exist interaction strength feature attribute

variable interaction network 
as a graph; this work can 
extend the vis in feature 
attribute by visualizing the 
interactions of features as 
graph node-link undirected graph show case study

32 Mind the Gap

Kim, B., Shah, J. A., & Doshi-Velez, 
F. (2015). Mind the Gap: A 
Generative Approach to Interpretable 
Feature Selection and Extraction. 
Retrieved from https://papers.nips.
cc/paper/5957-mind-the-gap-a-
generative-approach-to-interpretable-
feature-selection-and-extraction intrinsic

intrinsic 
generative 
model graphical model for feature selection

distinguishable feature 
dimensions, and their 
clusters feature attribute feature value

visually show the 
distinguishable features baseline eval; user study

33 RETAIN

Choi, E., Bahadori, M. T., Kulas, J. 
A., Schuetz, A., Stewart, W. F., & 
Sun, J. (2016). RETAIN: An 
Interpretable Predictive Model for 
Healthcare using Reverse Time 
Attention Mechanism. Retrieved from 
http://arxiv.org/abs/1608.05745

model, 
trainining data

intrinsic 
interpretable 
RNN model

use attention model to detect influential 
past visits and significant clinical variables 
within those visits feature contribution in EHR feature attribute feature contribute

visualize the feature 
contribution on a time scale

model performance; visual 
inspection

34 Integrated Gradient

Sundararajan, M., Taly, A., & Yan, Q. 
(2017). Axiomatic Attribution for Deep 
Networks. Retrieved from http://arxiv.
org/abs/1703.01365 model, gradient CNN; post-hoc

combines the Implementation Invariance of 
Gradients along with the Sensitivity of 
techniques like LRP or DeepLift

pixel-level feature 
importance score feature attribute feature importance score

color coded the importance 
score on spatial input data

visual inspection; heatmap showing 
the feature correlation between the 
language translation model

35 PDP

Friedman, J. H. (2001). Greedy 
Function Approximation: A Gradient 
Boosting Machine. The Annals of 
Statistics, 29(5), 1189–1232. 
Retrieved from http://www.jstor.org.
proxy.lib.sfu.ca/stable/2699986

input-output 
pairs agonostic

get the marginal effect of features (1 or 2) 
on the prediction

feature value w.r.t prediction, 
feature shape feature attribute feature shape line or surface plot multiple dataset visual inspection

36 Interpretable CNN

Zhang, Q., Wu, Y. N., & Zhu, S.-C. 
(2017). Interpretable Convolutional 
Neural Networks. Retrieved from 
http://arxiv.org/abs/1710.00935

intrinsic 
explanable 
model intrinsic

the loss function make the filers in the deep 
layer CNN represent the specific object part

visualize the filter as object 
detector feature attribute

input image with mask 
showing the receptie field of 
the filters image mask

classification accuracy; location 
stability; visual inspection
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37 distillation

Watanabe, C., Hiramatsu, K., & 
Kashino, K. (2018). Knowledge 
Discovery from Layered Neural 
Networks based on Non-negative 
Task Decomposition. Retrieved from 
https://arxiv.org/pdf/1805.07137.pdf
Barrett, D. G. T., Morcos, A. S., & 
Macke, J. H. (2018). Analyzing 
biological and artificial neural 
networks: challenges with 
opportunities for synergy? Retrieved 
from https://arxiv.org/pdf/1810.13373.
pdf              Che, Z., Purushotham, 
S., Khemani, R., & Liu, Y. (n.d.). 
Distilling Knowledge from Deep 
Networks with Applications to 
Healthcare Domain. Retrieved from 
https://arxiv.org/pdf/1512.03542.pdf

trained model, 
training data post-hoc

teach an interpretable model by learning 
from black-box model, using its output as 
soft labels

as the format of interpretable 
model: linear, decision 
tree/rule

feature attribute; 
decision

depends on the form of 
interpretable model

compare the student model 
performance with teacher model

38 Gamut

Hohman, F., Head, A., Caruana, R., 
DeLine, R., & Drucker, S. M. (2019). 
Gamut. In Proceedings of the 2019 
CHI Conference on Human Factors 
in Computing Systems - CHI ’19 (pp. 
1–13). New York, New York, USA: 
ACM Press. https://doi.org/10.
1145/3290605.3300809

input-output 
pairs agnostic

visual analytic system based on GAM 
curves

partical dependence of 
features for global and 
individual explanation feature attribute; linear feature importance score

mainly line plot for features, 
also support instance 
explanation and user defined 
grouping

participatory design; thorough user 
study

39 VINE

Britton, M. (2019). VINE: Visualizing 
Statistical Interactions in Black Box 
Models. Retrieved from http://arxiv.
org/abs/1904.00561

input-output 
pairs agnostic

reginal explanations, i.e. algorithm capture 
a subset of data that share a common 
behavior (like unsupervised clustering), and 
describe the common behaviro. capture the 
feature interaction which is a weakness in 
partial dependence plot

VINE curve, showing the 
PDP/IDE plot, and the 
decompositions from 
regional explanations feature attribute; linear

feature values, and 
interaction strength (another 
dimension to be added to the 
feature attribute class)

encode the PDP as line 
chart; encode the individual 
line chart on a 2D plot; also 
plot the PDP as 2-D feature 
heatmap and contour plots. ( 
Note that PDPs (and other 
plots in this family) can be 
presented with the standard 
scale (in which the Y-axis is 
read as the predicted value) 
or as a centered
PDPs (and other plots in this 
family) can be presented 
with the standard scale (in 
which the Y-axis is read as 
the predicted value) or as a 
centered PDP (in which case 
the Y-axis is read as the 
change from the average 
prediction)

compare to random clustering 
baseline and statsitical methods

40
Visualizing the 
Feature Importance

Casalicchio, G., Molnar, C., & Bischl, 
B. (2018). Visualizing the Feature 
Importance for Black Box Models. 
Retrieved from http://arxiv.
org/abs/1804.06620

input-output 
pairs (black-
box) agnostic

pertubation/sampling-based using Monte-
Carlo to measure feature importance on 
individual data

local feature importance 
score feature attribute; linear

local and global importance 
score

partial importance (PI); 
individual conditional 
importance (ICI) plots as line 
plot simulation experiment; real data

41 Tree SHAP

Lundberg, S. M., Erion, G. G., & Lee, 
S.-I. (n.d.). Consistent Individualized 
Feature Attribution for Tree 
Ensembles. Retrieved from http:
//github.com/slundberg/shap

input-output 
pairs; trees

tree ensembles; 
specific

estimate SHAP values and interaction for 
tree ensembles

SHAP values (individualized 
feature attribute); cluster 
samples by explnation 
similarity (of different feature 
combinations/interactions) feature attribute; linear

data subset clustering; global 
feature importance

data subset clustering; 
partial dependence plot (bar 
chart representing global 
feature importance); SHAP 
summary plots (plot each 
individual dot on the global 
feature attribute plot, dot is 
color coded by the feature 
value); SHAP dependence 
plot (plot invidicual data in 
the partial dependence plot). 
An aggregation of local 
explanation to form a global 
explanation is also the role of 
visual analytics.

AUC; user study agreement w/ 
human

42
sensitivity analysis 
& class prototype

Simonyan, K., Vedaldi, A., & 
Zisserman, A. (n.d.). Deep Inside 
Convolutional Networks: Visualising 
Image Classification Models and 
Saliency Maps. Retrieved from http:
//code.google.com/p/cuda-convnet/

model, weight, 
gradient CNN; post-hoc

gradient-based saliency map; optimization 
to find the class prototype

saliency map; class 
prototypical image

feature attribute; 
prototype

feature importance; 
prototype image

color coded the importance 
score on spatial input data visual inspection

43 GuidedBackProp

Springenberg, J. T., Dosovitskiy, A., 
Brox, T., & Riedmiller, M. (2014). 
Striving for Simplicity: The All 
Convolutional Net. In ICLR workshop. 
Retrieved from http://arxiv.
org/abs/1412.6806 model; gradient

post-hoc; CNN 
model family

combine deconvolution and gradient back 
prop to get sparse feature attribute

pixel-level importantce score; 
filter visualization

feature attribute; 
protytpe

pixel-level importantce score; 
filter visualized as object 
detector

color coded the importance 
score on spatial input data; 
filter visualization visual inspection

44 Deconv

Zeiler, M. D., & Fergus, R. (2014). 
Visualizing and understanding 
convolutional networks. In Lecture 
Notes in Computer Science 
(including subseries Lecture Notes in 
Artificial Intelligence and Lecture 
Notes in Bioinformatics) (Vol. 8689 
LNCS, pp. 818–833). Springer, 
Cham. https://doi.org/10.1007/978-3-
319-10590-1_53 model; gradient

post-hoc; CNN 
model family

use deconvolution operation to backprop 
the decision to input space

pixel-level importantce score; 
filter visualization

feature attribute; 
protytpe

pixel-level importantce score; 
filter visualized as object 
detector

color coded the importance 
score on spatial input data; 
filter visualization occulusion test, visual inspection
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45

Wachter's 
counterfactual 
explanation

Wachter, S., Mittelstadt, B., & 
Russell, C. (2017). Counterfactual 
Explanations without Opening the 
Black Box: Automated Decisions and 
the GDPR. Retrieved from http:
//arxiv.org/abs/1711.00399

input-output 
pairs agnostic

minimize a counterfactual instance as close 
as the query instance such that its 
prediction is the counterfactual prediction

unconditional counterfactual 
explanations instance; counterfactual

counterfactual instance (with 
the most changed features), 
and counterfactual prediction

text to show the tabular 
instance feature and its 
prediction unclear...

46
Prototype case-
based reasoning

Li, O., Liu, H., Chen, C., & Rudin, C. 
(n.d.). Deep Learning for Case-Based 
Reasoning through Prototypes: A 
Neural Network that Explains Its 
Predictions. Retrieved from https:
//arxiv.org/pdf/1710.04806.pdf

training dataset 
to train the XAI 
model; query 
image for 
similarity 
measure

intrinsic; VAE; 
classification

a prototype layer; cost func minimize the 
prototype vector to be close to the training 
set; visualize the prototype vector using 
decoder learned class prototypes prototype

showing prototypical 
examples as what the NN 
learned; similarity distance 
between query and 
prototyeps

visual inspect the prototypes, 
similarity distance of query images 
to prototypes

47 This looks like that

Chen, C., Li, O., Tao, C., Barnett, A., 
& Rudin, C. (n.d.). This Looks Like 
That: Deep Learning for Interpretable 
Image Recognition. Retrieved from 
https://arxiv.org/pdf/1806.10574.pdf

training dataset 
to train the XAI 
model

intrinsic; CNN; 
classification

a protoytpe layer in CNN replace conv 
opertaion with squared L2 distance 
computation to training patches (as 
prototype filter); final prediction is the linear 
combination of prototype layer; add 
seperation and cluster cost.

prototypes are prototypical 
parts of images prototype

activation map of prototype + 
similarity score + total points 
for class; complex reasoning 
process

visual inspection of explanatory, 
and tSNE for visuallizing latent 
space learned by the model; accu

48
Bayesian case 
model

Kim, B., Rudin, C., & Shah, J. (2014). 
The Bayesian case model: a 
generative approach for case-based 
reasoning and prototype 
classification. Proceedings of the 
27th International Conference on 
Neural Information Processing 
Systems - Volume 2. MIT Press. 
Retrieved from https://dl-acm-org.
proxy.lib.sfu.ca/citation.cfm?
id=2969045 intrinsic intrinsic model

perform joint inference on cluster labels, 
prototypes and important features to learn 
prototype prototype and subspace prototype prototype and subspace

show prototype and 
subspace user study; visual inspection

49 ProtoDash

Gurumoorthy, K. S., Dhurandhar, A., 
& Cecchi, G. (2017). ProtoDash: Fast 
Interpretable Prototype Selection. 
Retrieved from http://arxiv.
org/abs/1707.01212 input dataset

clustering 
method

prototype identification with weights, based 
on learn to criticise weighted prototypes prototype prototype show prototype visual inspection; user study

50

attention-based 
prototypical 
learning

Arik, S. O., & Pfister, T. (2019). 
Attention-Based Prototypical 
Learning. Retrieved from http://arxiv.
org/abs/1902.06292

neural network 
with attention 
module

neural network; 
post-hoc

utilizes an attention mechanism that relates 
the encoded representations to determine 
the prototype

class prototype and its 
weights prototype prototype prototype

visual inspection of image and text 
prototypes; robust to label noise, 
sparse explanation

51 k-Medoids

KAUFMANN, & L. (1987). Clustering 
by Means of medoids. Proc. 
Statistical Data Analysis Based on 
the L1 Norm Conference, Neuchatel, 
1987, 405–416. Retrieved from https:
//ci.nii.ac.jp/naid/10027761751/ training data

intrinsic, finding 
prototypes k-medoids prototype; clustering raw input, medoids

show input data and 
prototypes any input type

52 MMD-critic

Kim, B., Khanna, R., & Koyejo, O. O. 
(2016). Examples are not enough, 
learn to criticize! Criticism for 
Interpretability. Retrieved from https:
//papers.nips.cc/paper/6300-
examples-are-not-enough-learn-to-
criticize-criticism-for-interpretability

training data (to 
find the 
prototype and 
critism)

debug for the 
model, input 
data distribution

nearest prototype model': get 
representative instances (prototypes and 
critism) to debug the model. using greedy 
search to find prototypes which represents 
the dataset, and crititism (outliers) which 
not represented by the prototype. 
compares the distribution (measured by 
witness function using RBF kernel) of the 
data and the distribution of the selected 
prototypes

get the model's predictions 
for prototypes and critisms, 
and debug based on it. 
understand complex data 
distributions prototype; clustering input data instance show input data

uesr study show users have better 
performance using prototypes and 
critisms than random images

53 RuleMatrix

Ming, Y., Qu, H., & Bertini, E. (n.d.). 
RuleMatrix: Visualizing and 
Understanding Classifiers with Rules. 
Retrieved from https://arxiv.
org/pdf/1807.06228.pdf

input-output 
pairs agnostic

pedagogical learning, student rule use the 
labels from the teacher model; rule learning 
based on Scalable Bayesian Rule Lists; 
rule filter to make the explanation selective rules rule

data flow; rules (feature, rule 
support and fiedlity); data 
distribute to indicate the rule

matrix row - rule, col - 
feature, grid - feature 
distribute. show data flow as 
the order of the rule; support 
info show the right/wrong 
ratio, fidelity, evidence. User 
can interact to filter the rules.

user case and user study, no 
evalaution on the rule indcution 
algorithm

54 Anchor

Ribeiro, M. T., Singh, S., & Guestrin, 
C. (n.d.). Anchors: High-Precision 
Model-Agnostic Explanations. 
Retrieved from www.aaai.org

perturbation 
distributions 
and a black box 
model agnostic

rule finding algorithms not assume a 
dataset prior

An anchor explanation is a 
rule that sufficiently 
“anchors” the prediction 
locally – such that changes 
to the rest of the feature 
values of the instance do not 
matter. rule

anchored feature for an 
query instance, and 
precision and coverage 
https://github.
com/marcotcr/anchor if then rule list simulation experiment; user study

55 Bayesian Rule Lists

Letham, Benjamin, et al. 
“Interpretable classifiers using rules 
and Bayesian analysis: Building a 
better stroke prediction model.” The 
Annals of Applied Statistics 9.3 
(2015): 1350-1371.

training data to 
train the 
interpretable 
model

classificaition; 
intrinsic

produce decision lists using generative 
model, producing a posterior distribution 
over if then rules; employs a novel prior 
structure to encourage sparsity.

trained interpretable model 
of rule list, for medical 
scoring and grading rule

rules and predicted class 
probabilities and (CI) if else text description list AUC of the model

56
Scalable Bayesian 
Rule Lists

Yang, H., Rudin, C., & Seltzer, M. 
(2016). Scalable Bayesian Rule Lists. 
Retrieved from http://arxiv.
org/abs/1602.08610

training data to 
train the 
interpretable 
model

classificaition; 
intrinsic

built upon a pre-mined rules; global 
optimization (instead of DT of greedy 
optimize) defining a distribution of decision 
lists with prior distributions for the length of 
conditions (preferably shorter rules) and the 
number of rules (preferably a shorter list).

trained interpretable model 
of rule list rule rules if else text description list AUC and runtime of the model
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57 Bayesian Rule Sets

Wang, T., Rudin, C., Velez-Doshi, F., 
Liu, Y., Klampfl, E., & MacNeille, P. 
(2016). Bayesian Rule Sets for 
Interpretable Classification. In 2016 
IEEE 16th International Conference 
on Data Mining (ICDM) (pp. 1269–
1274). IEEE. https://doi.org/10.
1109/ICDM.2016.0171

intrinsic model; 
training data intrinsic model

a Bayesian framework for learning rule set 
models, with prior parameters can be set 
by users to encourage the model to have a 
desirable size and shape rule sets rule rules if else text description list

test on 10 UCI dataset with other 
baseline interpretable models

58
Surrogate Decision 
Tree Visualization

Castro, F. Di, & Bertini, E. (2019). 
Surrogate Decision Tree 
Visualization Interpreting and 
Visualizing Black-Box Classification 
Models with Surrogate Decision Tree. 
Retrieved from http://ceur-ws.org/Vol-
2327/IUI19WS-ExSS2019-15.pdf

input-output 
pairs for train 
the decision 
tree, with 
training data 
and their soft 
labels (labelled 
by original 
model) agnostic

use model distillation to train the decision 
tree on soft labels/ 

decision tree, and feature 
importance (quantified by 
Gini index) rule

decision tree. user can select 
the tree depth by sliding the 
fidelity level Tree: node-link;  rule: tabluar 

functional (fidelity, computational 
speed, tree complexity); user study 
w/ ML developers

59 LORE

Guidotti, R., Monreale, A., Ruggieri, 
S., Pedreschi, D., Turini, F., & 
Giannotti, F. (2018). Local Rule-
Based Explanations of Black Box 
Decision Systems. Retrieved from 
http://arxiv.org/abs/1805.10820

input-output 
pairs agnostic

genetic algorithms for neighborhood 
generation

local explanations consists of 
1) local rule and 2) 
counterfactual rule rule; conterfactual decision tree, rule list tree or rule list

fidelity compare with other baseline 
method lime, anchor


