		XAI algorithm					Visual Vocabularies (Expla	natory representation format	class)		Local vs global	5.	Who	
Algorithm Name	Paper bibilography	Things needed to get the explainatory model (eg: model parameters, training data)	Original model (model- agnostic vs specific; post- hoc vs. intrinsic)	Method	XAI model output	Explanatory Information Classification	Data type	Encoding method	Vis figures	Evaluation of XAI method	Local	Global	Develo	
Algorithm Name	Maaten, L. van der, & Hinton, G.	training data)	intrinsic)	wethod	AAI model output	Classification	Data type	Encoding method	vis igures	Evaluation of XAI method	Local	Giobai	pers	users
t-SNE	(2008). Visualizing Data using t-SNE. Journal of Machine Learning Research, 9(Nov), 2579–2605. Retrieved from http://www.jmlr. org/papers/v9/vandermaaten08a.html	input data, or high- dimensional feature space	model-agnostic	non-linear transformation of high- dimensional space to 2D visualization	2D visualization	clustering	data point as clusters	dimensional reduction		visual inspection; multiple dataset comparison with other methods				
	McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Retrieved from http://arxiv.org/abs/1802.03426	input data, or high- dimensional feature space	model-agnostic	non-linear transformation of high- dimensional space to 2D visualization	2D visualization	clustering	data point as clusters	dimensional reduction	······································	visual inspection; computation comparison with other methods (runtime, scaliblity with embedding space, sample points)		~	~	~
iBCM	Kim, B., Glassman, E., Johnson, B., & Shah, J. (2015). iBCM: Interactive Bayesian Case Model Empowering Humans via Intuitive Interaction. Retrieved from www.csail.mit.edu	cluster label, likelihood of prototypes and subspaces	clustering method	interactive bayesian case model, user- defined clustering	user-defined clustering	clusterina: prototype	prototype	show prototype and its features highlighted		user study, real-world implementation				
	Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., & Sayres, R. (n.d.). Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). Retrieved from https://arxiv.org/pdf/1711.11272	concepts; query		get the decision boundaries and its perpendicular vector as the CAV; the directional derivitative of a class training	concept activation vector (showing the global class concept); measured as			bar chart comparing different		simulation experiment; user test w/			X	•
	pdf Cai, C. J., Reif, E., Hegde, N., Hipp,	images	classification	image is the TCAV	TCAV score (0-1)	concept	quantified [0,1]	concepts;	d) was fixed more fixed	lay person and doctors				
5 TCAV	J., Kim, B., Smilkov, D., Cor-Rado, G. S. (n.d.). Human-Centered Tools for Coping with Imperfect Algorithms During Medical Decision-Making, 14. https://doi.org/10.1145/3290605. 3300234		CNN; image retrieval	A application using TCAV and CBIR for		concept	catagorical concepts, each	a slider bar to control the		mixed method user study w/				
TCAV	3300234		retrieval	medical decision support		concept	quantified [0,1]	degree of concept		pathologist				
	Bau, D., Zhou, B., Khosla, A., Oliva, A., & Csail, A. T. (n.d.). Network Dissection: Quantifying Interpretability of Deep Visual Representations. Retrieved from http: //netdissect.csail.mit.edu		CNN; post-hoc	quantify the interpretability by aligning units in CNN with semantic concepts (segmentation)	score the semantics (ofobjects, parts, scenes, textures, materials, and colors) of hidden units at each intermediate convolutional layer. more for network analysis	concept	concept quantification	showing semantic concepts for individual units, and the layers in total.		quantify the interpretability among tayers and networks				
7 net2vec	Babiker, H. K. B., & Goebel, R. (2017). An Introduction to Deep Visual Explanation. Retrieved from http://arxiv.org/abs/1711.09482	training images; model parameters		study what information is captured by combinations (rather than individual) of neural network filters; formulate concept vectors as embeddings, theoretical analysis work, not explicitly for explanation	best filter for concept; and their learned weights (as concept embeddings)	concept	filters in CNN, and their weights	visualize the fillters of concepts, and their combined weights		quantify the filter-concept overlap w/ gt segmentation IoU				
	Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2014). Object Detectors Emerge in Deep Scene CNNs. Retrieved from http: //arxiv.org/abs/1412.6856	CNN parameters; dataset w/ segmentation map to show accuracy	post-hoc; CNN; classification	visualize the unit in NN by projecting the receptive field, minimal image representations.	mask overlay on multiple input image showing the area the unit detects	concept; feature attribute		showing example images w/ masks receptive field of detect area		compare receptive field object detection w/ at segmentation				
	Laugel, T., Lesot, MJ., Marsala, C., Renard, X., & Detyniceki, M. (2018). Comparison-Based Inverse Classification for Interpretability in Machine Learning. In J. Medina, M. Ojeda-Aciego, J. L. Verdegay, D. A. Petal, J. P. Cabrera, B. Bouchon- Meunier, A. R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (pp. 100–111). Cham: Springer International Publishing, attornal Publishing, https: Publishing, attornal Publishing, https:	input-output pairs	agnostic; classification	growing sphere: The method first draws a sphere around the point of interest, samples points within that sphere, checks whether one of the sampled points yields the desired prediction, contracts or expands the sphere accordingly until a (sparse) counterfactual is found and finally returned. They also define a loss function that favors counterfactuals with as few changes in the feature values as possible.	changed feature and its value w.r.t to the query instance	counterfactual instance; counterfactual	featurs and its new changed values, counterfactual prediction, query instance	show the instance if it's interpretable (image, text, tabular not too large) and the what-if changes in the featurs, and the counterfactual prediction		functional eval; case study				
O CNN to DT	Decision Trees. Retrieved from http: //arxiv.org/abs/1802.00121	intrinsic explanable model	intrinsic	semantic and quantative explanation. decomposes feature representations in high conv-layers of the CNN into elementary concepts of object parts in the decision tree. The decision tree tells people which object parts activate which filters for the prediction and how much they contribute to the prediction score.	decision tree	decision tree	semantic part outlined in the input image; the decision tree	node-link tree, show examples for the leaf		metrics (errors of object-part contributions, fitness of contribution distributions). accuracy of decision tree				
	k nearest neighbors, non-parametric, generative, supervised classification				class label and its nearest			show raw input and its						
2 SHAP	algorithm Lundberg, S. M., Allen, P. G., & Lee, SI. (n.d.). A Unified Approach to Interpreting Model Predictions. Retrieved from https://github.	training data input features (super pixel;	intrinsic agnostic or	instance additive feature importance measure unifying (LIME, DeepLIFT, Layer-wise relevance propagation; shapley value estimation); assign each feature an important value for a prediction	neighbors	example	raw input	color code the attribute, show contrast features (remove feature to change	any input type					

		XAI algorithm					Visual Vocabularies (Expla	natory representation format	class)		Local v global	s.	Who	
		Things needed to get the explainatory model (eg: model parameters,	Original model (model- agnostic vs specific; post- hoc vs.			Explanatory					3		Develo	
	Paper bibilography de la Torre, J., Valls, A., & Puig, D.	training data)	intrinsic)	Method	XAI model output	Classification	Data type	Encoding method	Vis figures	Evaluation of XAI method	Local	Global	pers	use
Interpretable Classifier for Diabetic Retinopathy	(2017). A Deep Learning Interpretable Classifier for Diabetic Retiropathy Disease Grading. Retrieved from http://arxiv. org/abs/1712.08107	query image	CNN; classification	decompose the score from one layer as from input and the layer constant, using deconv	a scoring system	feature attribute	input feature level importance score	feature score at each layer for each class; and pixel- wise score		function eval and visual inspection, not thoroughly.				
		iamge features, and bag of	agnostic	perturbation-based, weighted sampling around the local query instance, and fit a linear model at local	pertubation-based, support what-if by modifying feature values; depending on the explain function (linear, decision-tree, rule). In the paper they use sparse linear model	feature attribute	input feature level	image mask showing important superpixel; bar chart showing important text features	Registration of the second sec	simulate gt features to test fieldity;				
	Robnik-Sikonja, M., & Kononenko, I. (2008). Explaining Classifications For Individual Instances. IEEE Transactions on Knowledge and Data Engineering, 20(5), 589–600. https: //doi.org/10.1109/TKDE.2007.190734		agnostic	pertubation-based, computes the influence of a feature value by observing its impact on the model's output.	information difference measure for each features	feature attribute	neg/postive important score at input feature level [-1, 1]			simulation experiment for fieldity	✓	~	✓	
IME/SHAP (Shapley Additive	ErikStrumbelj, E., & Kononenko, I. (2010). An Efficient Explanation of Individual Classifications using Game Theory. Jmlr '10, 11, 20. Retrieved from http://www.ailab. si/oranae/clatasets.psp.			pertubation-based, capture interactions between features. to reduce the computation, use game theory to approximate. generate global feature importance via game theory	feature attribute	feature attribute	neg/postive important score at input feature level [-1, 1]		Non-researcher Contract Contract of the second	functional eval (fieldity, run time); gual (show explain expamples)	✓			
. ,	Petsiuk, V., Das, A., & Saenko, K. (2018). RISE: Randomized Input	input-ouput pairs; input is sampled using random masks		pertubation-based; probe the black-box model by sub-sample the input by using random masks, and use the output as weights for the masked input	important map	feature attribute	input feature level importance score	saliency map	(c) 1.02 Million (c) 1.02 Mil	functional eval (insertions, deletion, pointing game accuracy)	✓			
Learning Global Additive	Koch, P., & Gordo, A. (2019). Learning Global Additive Explanations of Black-Box Models.	input-output pairs; input features, need to be semantic meaningful so that users can interprete	agnostic	distill a student global addictive model from original teacher model, create explanation by examining the individual featuer shape w.r.t output plot.	feature shapes of a base func describes the relationship between featreus and predictions.	feature attribute	feature shape (from a base func) ploting the relationship between a feature and the output (may be non-linear)	visualize the feature shape wrt prediction (since each feature is addictive relationship with prediction); vis is suitable for ML experts not very interpretable for end users. Need to adopt to simpler visualization.	Forture shapes $h_i(x)$	functional eval (designing ground- truth explanations): user study with ML experts (time, capture gt features, demand, catch data error)				
GA2M (Generalized Addictive Models	Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (n.d.). Accurate Intelligible Models with Pairwise Interactions. Retrieved from http://www.cs.cornell. edu/~yinlou/papers/lou-kdd13.pdf		agnostic	based on GAM (generalized addictive model) with added interaction terms of two features	GAM and important paired feature interactions	feature attribute	feature shape, paired feature interaction	line plot for feature shape, 2D heatmap for feature interaction		fidelity, case study showing the visualization				~
LRP (layer-wise relevance	Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015).	model, weights, activation	neural network, post-hoc	It identifies important pixels by running a backward pass. The backward pass is a conservative relevance redistribution procedure, where neurons that contribute the most to the higher-layer receive most relevance from it.	pixel-level feature importance score	feature attribute	feature importance score	color code on top of the input	8	visual inspection; flipping experiment				~
	Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning Important Features Through Propagating Activation Differences. Retrieved from http://arxiv. org/abs/1704.02885	model, activation, weights	neural network, post-hoc	compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference	pixel-level feature	feature attribute	feature importance score	color code on top of the inpu image; code the importance using size on DNA data		ablation test on pixel for importance score; visual inspection				1
	Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (n.d.). Learning Deep Features for Discriminative Localization. Retrieved	model parameters; query image	CNN with GAP	weighted sum of activation maps; the weights are from GAP(global average pooling) laver	pixel-level importantce score	feature attribute	pixel-level importantce score	color coded the importance		accu, localization ability, visually show the results	✓			
Grad-CAM &	Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2016). Grad-CAM: Visual Explanations from Deep Networks via		post-hoc; CNN model family	weighted sum of activation maps, the weights are from the graidents of output w. r.t the actv maps	pixel-level importantce score		pixel-level importantce score also support counterfactual explanations, by negating the gradient of target class			user study for class discrimination, trust. analyze failure modes adversarial noise, bias.				
	Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017).	sample on the query image by adding noise;		sample similar images by adding noise to the image, then take the average of the resulting sensitivity maps	saliency map	feature attribute	pixel-level importantce score	visualize saliency map; also visualize the difference of saliency map for top two class predictions, as a contrast explanation (or any sensitive analysis/feature attribute based method can do so), but not very intuitive		visual inspection, compare w/ other grad based methods				
PattenNet and	Kindermans, PJ., Schütt, K. T., Alber, M., Müller, KR., Erhan, D., Kim, B., & Dähne, S. (2017). Learning how to explain neural networks: PatternNet and PatternAttribution. Retrieved from	model parameters; input and its	post-hoc	disentangle the signal and weights that forms the predictions	feature attribute	feature attribute	feature-level importance	color coded the importance score on spatial input data (not limited to images)		signal estimator quality measure; image degradation experiment; visual inspect with other methods	~		✓	~

		XAI algorithm					Visual Vocabularies (Expla	natory representation format	class)		Local v global	s.	Who	
		Things needed to get the explainatory model (eg: model parameters,	Original model (model- agnostic vs specific; post- hoc vs.			Explanatory Information					3		Develo	
Algorithm Name	Paper bibilography	training data)	intrinsic)	Method	XAI model output	Classification	Data type	Encoding method	Vis figures	Evaluation of XAI method	Local	Global	pers	use
right for the right reasons	Ross, A., Hughes, M. C., & Doshi- Velez, F. (n.d.). Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations. Retrieved from https: //aithub.com/dtak/rrr.	input	post-hoc	align gradient-based method with pertubation-based method, since pertubation methods are computational expensive; input gradient explanations match state of the art sample-based explanations; optimize the classifier to learn alternative explanations.	feature importance	feature attribute		feature positive/negative attribute	A few of the strategies of the	visual comparion w/ LIME baseline				
	Tan, S., Caruana, R., Hooker, G., & Lou, Y. (2018). Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation. https:	audit data (not necessaryly training data); gt; black-box		compare the student model trained with distillation to a second un-distilled transparent model trained on ground-truth outcomes, and use differences between the two models to gain insight into the black-	use iGAM as transparent model in the paper; feature			in the form of GAM or tree (depending on the	·					C
deep visual explanation	//doi.org/10.1145/3278721.3278725 Babiker, H. K. B., & Goebel, R. (2017). An Introduction to Deep Visual Explanation. Retrieved from http://arxiv.org/abs/1711.09482	model model; query image	agnostic	box model transform the activation map in Fourier domain, and convert back to get the saliency map	contributions saliency map	feature attribute		explanatory model used) saliency map		fidelity of the mimic model visual inspect w/ other saliency map method				~
	Krause, J., Perer, A., & Ng, K. (n.d.). Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models. https://doi.org/10. 1145/2856036.2856529	input-output pairs	agonostic	an interactive visual analytic system based on partial dependence plot	partical dependence of	feature attribute	feature shape	color bar; line chart		case study on predicting diabetes on EHR w/ data scientists		×		
Individual conditional expectation plot (ICE)	Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2013). Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. Retrieved from http://arxiv.org/abs/1309.6392	input-output	agnostic	based on the partial dependence plot, and graph the functional relationship between the predicted response and the feature for individual observations. It suggests where and to what extent heterogeneities might exist.	feature shape for individual data point	feature attribute	feature shape for individual data point	line and scatter plot for each individual data point, showing the heterogeneity of the effects		visual test for addictivity; simulated and real data inspection				
VIN (Variable	G. Hooker. Discovering additive structure in black box functions. In Pro- ceedings ofthe tenth ACM SIGKDD international conference on Knowl- edge discovery and data mining, pp. 575–580. ACM, 2004	input-output pairs	agnostic	features are displayed in a stylized network graph in which connections indicate the presence of an interaction. This method is notable for its ability to efficiently identify interactions including 3 or more terms. The interactions are identified by an algorithm that uses a permutation method similar to feature importance scores [6] to identify features whose effect changes in the presence or absence of a potential interactor feature. The algorithm then cleverly prunes the search space by using the property that an interaction effect can only exist if all the lower-order effects that involve its feature also exist	interaction strength	feature attribute	variable interaction network as a graph; this work can extend the vis in feature attribute by visualizing the interactions of features as graph	node-link undirected graph	p tax rad crim ago kkat rox "pratio m dis	show case study				
	Kim, B., Shah, J. A., & Doshi-Velez, F. (2015). Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction. Retrieved from https://papers.nips. cc/paper/5927-mind-the-gap-a- generative-approach-to-interpretable- feature-selection-and-extraction		intrinsic generative model	graphical model for feature selection	distinguishable feature dimensions, and their clusters	feature attribute	feature value	visually show the distinguishable features						
RETAIN	Choi, E., Bahadori, M. T., Kulas, J. A., Schuetz, A., Stewart, W. F., & Sun, J. (2016). RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. Retrieved from http://arxiv.org/abs/1608.05745	model, trainining data	intrinsic interpretable RNN model	use attention model to detect influential past visits and significant clinical variables within those visits	feature contribution in EHR	feature attribute	feature contribute	visualize the feature contribution on a time scale		model performance; visual inspection				
Integrated Gradient	Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for Deep Networks. Retrieved from http://arxiv. org/abs/1703.01365	0	CNN; post-hoc	combines the Implementation Invariance of Gradients along with the Sensitivity of techniques like LRP or DeepLift	pixel-level feature importance score	feature attribute	feature importance score	color coded the importance score on spatial input data	Longenda yashenik	visual inspection; heatmap showing the feature correlation between the language translation model				
PDP	Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189–1232. Retrieved from http://www.jstor.org. proxy.lib.stu.ca/stable/2699986	input-output pairs	agonostic	get the marginal effect of features (1 or 2) on the prediction	feature value w.r.t prediction, feature shape	feature attribute	feature shape	line or surface plot		multiple dataset visual inspection				
Interpretable CNN	Zhang, Q., Wu, Y. N., & Zhu, SC. (2017). Interpretable Convolutional Neural Networks. Retrieved from http://arxiv.org/abs/1710.00935	intrinsic explanable model	intrinsic	the loss function make the filers in the deep layer CNN represent the specific object part	visualize the filter as object	feature attribute	input image with mask showing the receptie field of the filters	image mask	Feature maps of an interpretable filter	classification accuracy; location stability; visual inspection				

		XAI algorithm					Visual Vocabularies (Explan	natory representation format	class)		Local ve global	8.	Who	
		Things needed to get the explainatory model (eg: model parameters,	Original model (model- agnostic vs specific; post- hoc vs.			Explanatory Information							Develo	End-
Algorithm Name		training data)	intrinsic)	Method	XAI model output	Classification	Data type	Encoding method	Vis figures	Evaluation of XAI method	Local	Global	pers	users
distillation	https://arxiv.org/pdf/1512.03542.pdf	trained model, training data	post-hoc	teach an interpretable model by learning from black-box model, using its output as soft labels	as the format of interpretable model: linear, decision tree/rule	feature attribute; decision		depends on the form of interpretable model	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	compare the student model performance with teacher model		M		0
	Hohman, F., Head, A., Caruana, R., DeLine, R., & Drucker, S. M. (2019). Gamut. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI '19 (pp. 1–13). New York, New York, USA: ACM Press. https://doi.org/10.	input-output		visual analytic system based on GAM	partical dependence of features for global and			mainly line plot for features, also support instance explanation and user defined		participatory design; thorough user				
9 VINE	1145/3290605.3300809 Britton, M. (2019). VIINE: Visualizing Statistical Interactions in Black Box Models. Retrieved from http://anxiv. org/abs/1904.00561	pairs input-output pairs	agnostic	curves reginal explanations, i.e. algorithm capture a subset of data hat share a common behavior (ike unsupervised clustering), and describe the common behaviro, capture the feature interaction which is a weakness in partial dependence plot	Individual explanation	feature attribute; linear feature attribute; linear	feature importance score feature values, and interaction strength (another dimension to be added to the feature attribute class)	grouping encode the PDP as line, chart, encode the individual line chart on 2D plot, also plot the PDP as 2-D feature. heatmap and contour plots. I Note that PDPs (and other plots in this family) can be presented with the standard scale (in which the Y-axis is read as the predicted value) or as a centered PDPs (and other plots in this family) can be presented with the standard scale (in which the Y-axis is read as the predicted value) or as a centered PDP (in which case the Y-axis is read as the change from the average prediction)		study compare to random clustering baseline and statsitical methods				
	Casalicchio, G., Molnar, C., & Bischl, B. (2018). Visualizing the Feature Importance for Black Box Models. Retrieved from http://arxiv. org/abs/1804.06620	input-output pairs (black- box)	agnostic	pertubation/sampling-based using Monte- Carlo to measure feature importance on individual data	local feature importance score	feature attribute; linear	local and global importance score	partial importance (PI); individual conditional importance (ICI) plots as line plot		simulation experiment; real data				
	Lundberg, S. M., Erion, G. G., & Lee, SI. (n.d.). Consistent Individualized Feature Atthubunto for Tree Ensembles. Retrieved from http: //github.com/shap	input-output pairs, trees	tree ensembles; specific	estimate SHAP values and interaction for tree ensembles	SHAP values (individualized feature attribute); cluster samples by expination similarity (of different feature combinations/interactions)	feature attribute; linear	data subset clustering; global feature importance	data subset clustering: partial dependence plot (bar chart representing global feature importance); SHAP summary plots (plot each individual dot on the global feature attribute plot, dot is color coded by the feature value); SHAP dependence plot (plot invidicual data in the partial dependence plot). An aggregation of local explanation is also the role of visual analytics.		AUC; user study agreement w/ human		M		
sensitivity analysis	Simonyan, K., Vedaldi, A., & Zisserman, A. (n.d.). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. Retrieved from http: //code.google.com/j/cuda-convnet/	model, weight, gradient	CNN; post-hoc	gradient-based saliency map; optimization to find the class prototype	saliency map; class prototypical image	feature attribute; prototype	feature importance; prototype image	color coded the importance score on spatial input data		visual inspection				•
	Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for Simplicity: The All Convolutional Net. In ICLR workshop. Retrieved from http://arxiv. org/abs/1412.6806	model; gradient	post-hoc; CNN		pixel-level importantce score; filter visualization		pixel-level importantce score; filter visualized as object detector	color coded the importance score on spatial input data; filter visualization		visual inspection				
	Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8689 LNCS, pp. 818–833). Springer, Cham. https://doi.org/10.1007/978-3- 319-10590-1_53	model; gradient		use deconvolution operation to backprop the decision to input space	pixel-level importantce score; filter visualization	feature attribute; protytpe	pixel-level importantce score; filter visualized as object detector	color coded the importance score on spatial input data; filter visualization	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	occulusion test, visual inspection				

		XAI algorithm					Visual Vocabularies (Explan	natory representation format	class)		Local ve global	5.	Who	
		Things needed to get the explainatory model (eg: model parameters,	Original model (model- agnostic vs specific; post- hoc vs.			Explanatory Information							Develo	
Algorithm Name	Paper bibilography	training data)	intrinsic)	Method	XAI model output	Classification	Data type	Encoding method	Vis figures	Evaluation of XAI method	Local	Global	pers	users
Wachter's counterfactual explanation	Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR. Retrieved from http: //arxiv.org/abs/1711.00399	input-output pairs	agnostic	minimize a counterfactual instance as close as the query instance such that its prediction is the counterfactual prediction	unconditional counterfactual explanations	instance; counterfactual	counterfactual instance (with the most changed features), and counterfactual prediction	instance feature and its	Presen 1: If your 3-Hoar seman insulin level was 154.3, you would have a score of 0.51. Presen 2: If your 3-Hoar serven insulin level was 160.5, you would have a score of 0.51. Presen 2: If your Pleners placess concentration was 183.3 and your 3-Hoar seman insulin level was 160.5, you would have a score of 0.51.	unclear				
Prototype case- based reasoning	Neural Network that Explains Its	training dataset to train the XAI model; query image for similarity measure	intrinsic; VAE;	a prototype layer; cost func minimize the prototype vector to be close to the training set; visualize the prototype vector using decoder	learned class prototypes	prototype		showing prototypical examples as what the NN learned; similarity distance between query and prototyeps	3 9 0 7 3 0.88 1.47 0.70 1.58 1.44 6 6 7 1.92 1.64 0.29 1.99 1.92 6.41 0.35 6 9 2 4 4 2.5 0.88 1.01 1.55 1.24 1.23 1.24 0.84 1.01 1.55 1.23 1.23 1.24 0.84 1.01 1.55 1.23 1.24 0.84 1.01 1.55 1.24 0.24 0.84 1.01 1.55 1.23 1.24	visual inspect the prototypes, similarity distance of query images to prototypes		4		
	Chen, C., Li, O., Tao, C., Barnett, A., & Rudin, C. (n.d.). This Looks Like That: Deep Learning for Interpretable Image Recognition. Retrieved from https://arxiv.org/pdf/1806.10574.pdf	to train the XAI	intrinsic; CNN; classification	a protoytpe layer in CNN replace conv opertaion with squared L2 distance computation to training patches (as prototype filter); final prediction is the linear combination of prototype layer; add seperation and duster cost.	prototypes are prototypical parts of images	prototype		activation map of prototype + similarity score + total points for class; complex reasoning process		visual inspection of explanatory, and tSNE for visualizing latent space learned by the model; accu				~
Bayesian case 3 model	Kim, B., Rudin, C., & Shah, J. (2014). The Bayesian case model: a generative approach for case-based reasoning and prototype classification. Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. MIT Press. Retrieved from https://dia-arr-ogr. proxy.lib.stu.ca/citation.cfm? id=2959045	intrinsic	intrinsic model	perform joint inference on cluster labels, prototypes and important features to learn prototype	prototype and subspace	prototype	prototype and subspace	show prototype and subspace		user study; visual inspection				
ProtoDash	Gurumoorthy, K. S., Dhurandhar, A., & Cecchi, G. (2017). ProtoDash: Fast Interpretable Prototype Selection. Retrieved from http://arxiv. org/abs/1707.01212	input dataset	clustering method	prototype identification with weights, based on learn to criticise	weighted prototypes	prototype	prototype	show prototype		visual inspection; user study				
attention-based prototypical D learning	org/abs/1902.06292	neural network with attention module	neural network; post-hoc	utilizes an attention mechanism that relates the encoded representations to determine the prototype	class prototype and its weights	prototype	prototype	prototype		visual inspection of image and text prototypes; robust to label noise, sparse explanation				
1 k-Medoids	KAUFMANN, & L. (1987). Clustering by Means of medoids. Proc. Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, 1987, 405–416. Retrieved from https: //ci.nii.ac.jp/naid/10027761751/	training data	intrinsic, finding prototypes		k-medoids	prototype; clustering	raw input, medoids	show input data and prototypes	any input type					
2 MMD-critic	//papers.nips.cc/paper/6300- examples-are-not-enough-learn-to-	training data (to find the prototype and critism)		nearest prototype model: get representative instances (prototypes and critism) to debug the model, using greedy search to find prototypes which represents the dataset, and critism (outliers) which not represented by the prototype. compares the distribution (measured by witness function using RBF kernel) of the data and the distribution of the selected prototypes.	get the model's predictions for prototypes and critisms, and debug based on it. understand complex data distributions	prototype; clustering	input data instance	show input data		uesr study show users have better performance using prototypes and critisms than random images		~		
3 RuleMatrix	Ming, Y., Qu, H., & Bertini, E. (n.d.). RuleMatrix: Visualizing and Understanding Classifiers with Rules. Retrieved from https://arxiv. org/pdf/1807.06228.pdf	input-output pairs	agnostic	pedagogical learning, student rule use the labels from the teacher model; rule learning based on Scalable Bayesian Rule Lists; rule filter to make the explanation selective	rules	rule	data flow; rules (feature, rule support and fiedlity); data distribute to indicate the rule	matrix row - rule, col - feature, grid - feature distribute. show data flow as the order of the rule; support info show the right/wrong ratio, fidelity, evidence. User can interact to filter the rules.		user case and user study, no evalaution on the rule indcution algorithm		v		
4 Anchor	Ribeiro, M. T., Singh, S., & Guestrin, C. (n.d.). Anchors: High-Precision Model-Agnostic Explanations. Retrieved from www.aaai.org	perturbation distributions and a black box model	agnostic	rule finding algorithms not assume a dataset prior	An anchor explanation is a rule that sufficiently "anchors" the prediction locally – such that changes to the rest of the feature values of the instance do not matter.	rule	anchored feature for an query instance, and precision and coverage https://github. com/marcotcr/anchor	if then rule list	Control of the second s	simulation experiment; user study				
5 Bayesian Rule Lists	better stroke prediction model." The Annals of Applied Statistics 9.3	training data to train the interpretable model	classificaition; intrinsic	produce decision lists using generative model, producing a posterior distribution over if then rules; employs a novel prior structure to encourage sparsity.	trained interpretable model of rule list, for medical scoring and grading	rule	rules and predicted class probabilities and (CI)	if else text description list	If lemithings and app > 00 then which risk DMT (13.97, 43.97), the H control evolution of a risk that which risk DMT (13.97, 54.97), the H control evolution is sub-that which risk DMS (2012), 2012, 2013, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, and an oral DMS (12.27), 13.07), and H is fixed at a risk contactors and app app > 00 mm which risk that H is real start of contactors and app > 00 mm which risk that H is real start of contactors and app > 00 mm which risk that H is real start at R (12.97), 13.07), and H is real start R (12.97), 4.07), the H is real start R (12.97), 4.07), the start of R (12.97), 4.07), the risk risk R (12.97), 4.07), and the risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk R (12.97), 2.07), the risk risk R (12.97), 4.07), and the risk risk risk risk risk risk risk risk	AUC of the model				
Scalable Bayesian 6 Rule Lists	Yang, H., Rudin, C., & Seltzer, M. (2016). Scalable Bayesian Rule Lists. Retrieved from http://arxiv. org/abs/1602.08610	training data to train the interpretable model	classificaition; intrinsic	built upon a pre-mined rules; global optimization (instead of DT of greedy optimize) defining a distribution of decision lists with prior distributions for the length of conditions (preferably shorter rules) and the number of rules (preferably a shorter list).	trained interpretable model of rule list	rule	rules	if else text description list		AUC and runtime of the model		•		

		XAI algorithm					Visual Vocabularies (Explan	natory representation format	class)		Local v global		Who	
Algorithm Name	Paper bibilography	Things needed to get the explainatory model (eg: model parameters, training data)	Original model (model- agnostic vs specific; post- hoc vs. intrinsic)	Method		Explanatory Information Classification	Data type	Encoding method	Vis figures	Evaluation of XAI method	Local	Global	Develo pers	End- users
57 Bayesian Rule Sets	Wang, T., Rudin, C., Velez-Doshi, F., Liu, Y., Klampfi, E., & MacNeille, P. (2016). Bayesian Rule Sets for Interpretable Classification. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (pp. 1269– 1274). IEEE. https://doi.org/10. 1199/ICDM.2016.0171	intrinsic model; training data	intrinsic model	a Bayesian framework for learning rule set models, with prior parameters can be set by users to encourage the model to have a desirable size and shape	rule sets	rule	rules	if else text description list		test on 10 UCI dataset with other baseline interpretable models				
	Castro, F. Di, & Bertini, E. (2019). Surrogate Decision Tree Visualization Interpreting and Visualizing Black-Box Classification Models with Surrogate Decision Tree Retrieved from http://ceur-ws.org/Vo/ 2327/IU19WS-ExSS2019-15.pdf		agnostic	use model distillation to train the decision tree on soft labels/	decision tree, and feature importance (quantified by Gini index)	rule	decision tree. user can select the tree depth by sliding the fidelity level	Tree: node-link; rule: tabluar		functional (fidelity, computational speed, tree complexity); user study w/M_ developers				
59 LORE	Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local Rule- Based Explanations of Black Box Decision Systems. Retrieved from http://arxiv.org/abs/1805.10820	input-output pairs	agnostic	genetic algorithms for neighborhood generation	local explanations consists of 1) local rule and 2) counterfactual rule	rule; conterfactual	decision tree, rule list	tree or rule list	$ \begin{array}{l} \textbf{LORE}\\ r = (l_{1}mk_{1}^{2}, mmm1+200, having - even, effer, debute - \\ r = (l_{1}mk_{2}^{2}, mm2h_{2}^{2}, having - even a direct debute - \\ debute - \\ debute - \\ debute - \\ mm, error, h_{2}^{2}, having - even, with r_{1}, debute - \\ mm, error, h_{2}^{2}, having - even, with r_{2}, debute - \\ mm, error, h_{2}^{2}, having - a direct debut - \\ debute - \\ mm, error, h_{2}^{2}, having - a direct debut - \\ debute - \\ mm, error, debut - \\ having - a direct debut - \\ debute -$	fidelity compare with other baseline method lime, anchor				