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Evaluating Explainable Al

Can Existing Algorithms Fulfill Clinical Requirements?

Minimal Al literacy is
required for end-users to
Interpret the explanation

Understandability
@
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Explanation faithfully represents

Al reasoning process
Faithfulness
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e Gradually remove
heatmap features from
the most to the least
important ones in input

e Plot model performance
change w.r.t each
removal step

e Calculate the area under
the curve difference

(diffAUC) between an
algorithm and its baseline
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e Low diffAUC score \

Not stable across
similarly-trained models
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2. Modality importance correlation - modality level @ @ Some algorithms passed
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3. Synthetic data experiment - feature level @ All algorithms not passed °

High-grade glioma

Low agreement with
ground-truth
Not stable across
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Human judgment of plausibility is

indicative of Al decision quality

Plausibility
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multimodal_explanation

Overarching Problem

How to design & evaluate
explainable Al In
high-stakes domains?

Suitable for
clinical use
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@ All algorithms not passed

Their plausibilities were not indicative of model decision quality e Risks of optimizing explanation for plausibility only:

(p > 0.05) o a plausible but unfaithful explanation may learn to deceive, rather than help users

1. Plausibility quantification

e Modality-specific feature

importance (MSFI) metric
automates physicians’ manual
assessment process on

explanation plausibility

e The automation facilitates the
evaluation of a main explanation

The tumor is very\ k " k o
well detected. ...l
would like it to
prioritize T1CE
(modality) instead.
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goal: to enable users to identify
Al potential decision flaws or
biases via users’ judgment on
explanation plausibility

2. Test for plausibility relation with prediction correctness

B Right prediction [ 1 Wrong prediction
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e Rethinking explanation goals: explainability problem # localization problem
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