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A B S T R A C T

Explainable artificial intelligence (XAI) is essential for enabling clinical users to get
informed decision support from AI and comply with evidence-based medical practice.
Applying XAI in clinical settings requires proper evaluation criteria to ensure the ex-
planation technique is both technically sound and clinically useful, but specific support
is lacking to achieve this goal. To bridge the research gap, we propose the Clinical
XAI Guidelines that consist of five criteria a clinical XAI needs to be optimized for.
The guidelines recommend choosing an explanation form based on Guideline 1 (G1)
Understandability and G2 Clinical relevance. For the chosen explanation form, its
specific XAI technique should be optimized for G3 Truthfulness, G4 Informative
plausibility, and G5 Computational efficiency. Following the guidelines, we con-
ducted a systematic evaluation on a novel problem of multi-modal medical image ex-
planation with two clinical tasks, and proposed new evaluation metrics accordingly. 16
commonly-used heatmap XAI techniques were evaluated and found to be insufficient
for clinical use due to their failure in G3 and G4. Our evaluation demonstrated the use
of Clinical XAI Guidelines to support the design and evaluation for clinically viable
XAI.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Suppose an artificial intelligence (AI) developer Alex is de-

veloping a clinical AI system, and she wants to select an ex-

plainable AI (XAI) technique to make the AI model inter-

pretable and transparent to clinical users. As there are numer-

ous AI explainability techniques available, Alex may ask: How

can I choose an AI explainability technique that is the optimal
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for my target clinical task? She may look up literature on XAI

evaluation (Sokol and Flach, 2020; Mohseni et al., 2021; Vilone

and Longo, 2021; Došilović et al., 2018; Gilpin et al., 2018)

hoping it will guide her selection on XAI techniques. The liter-

ature suggests various selecting criteria and computational- or

human-level evaluation methods. But since Alex is building an

AI system which will assist doctors in clinically important deci-

sions, she may ask, Is it clinically viable to use these evaluation

metrics? Will they help to meet doctors’ clinical requirements

on AI explanation? How to prioritize multiple evaluation ob-

Preprint submitted to Medical Image Analysis June 13, 2022

http://www.sciencedirect.com
http://www.elsevier.com/locate/media


2 W. Jin et al. /Medical Image Analysis (2022)

Clinical Explainable AI Guidelines

Explainable AI 
algorithms

Suitable for 
clinical use

G3
Evaluation 
results on 
16 heatmap 
methods

Guideline 2 
Clinical 

relevance

Guideline 4
Informative 
plausibility

Guideline 3
Truthfulness

Guideline 5
Computational 

efficiency

FAST

No technical knowledge 
is required to understand 

the explanation

Explanation is 
relevant to clinical 
decision-making

Explanation should 
truthfully reflect model 

decision process

Human judgment on 
explanation plausibility 

can reveal decision quality

Computational speed is 
within clinical users' 

tolerable waiting time

G4 G5G2G1
The evaluated 
heatmap methods did 
not meet G3 and G4, 
thus cannot be 
recommended for 
clinical use. 

Guideline 1 
Understandability

Passed Partially passed Most passedNot passed Not passed

Fig. 1. The Clinical Explainable AI Guidelines. Explainable AI algorithms should meet the five criteria in the guideline to be suitable for clinical use.
The evaluation results on 16 heatmap methods regarding the guidelines criteria are shown at the bottom.

jectives for clinical XAI systems?

Alex’s questions are prevalent when applying or proposing

explainable AI techniques for clinical use. As a fast-advancing

technology, AI has transformative potential in many medi-

cal fields (Zhang et al., 2019; Fujisawa et al., 2018; Mohan

et al., 2020). Nonetheless, there are outstanding barriers to the

widespread translation of AI from bench to bedside (He et al.,

2019), such as data collection and harmonization (Nan et al.,

2022), data privacy (Topaloglu et al., 2021), bias and fairness in

data and model (Chen et al., 2021; Rajpurkar et al., 2022), do-

main adaptation and generalization (Futoma et al., 2020), and

model explainability (Jin et al., 2020; Rajpurkar et al., 2022;

Kelly et al., 2019). In this work, we focus on the problem of

AI model explainability, interpretability, or transparency. The

model explainability issue is caused by the black-box nature of

the state-of-the-art AI technologies, i.e., deep neural networks

(DNN): the decision process of AI models is not completely

and intuitively comprehensible even to its human creators, due

to its millions of parameters, complex feature representations in

high-dimensional space, multiple layers of decision processing,

and non-linear mappings from input space to output prediction.

AI developers, like Alex, resort to XAI techniques to explain

AI decisions in human-understandable forms (Doshi-Velez and

Kim, 2017), and enable clinical users to make informed de-

cisions with AI assistance that comply with evidence-based

medical practice1 (Sackett et al., 1996). The notion of XAI

and its corresponding techniques were originally proposed in

the machine learning community (Barredo Arrieta et al., 2020;

Guidotti et al., 2018; Zhang and Zhu, 2018), and were then ap-

plied and developed in the medical image analysis (MIA) com-

munity (Yang et al., 2022; Singh et al., 2020b), for example in

brain (Pereira et al., 2018), retinal (De Fauw et al., 2018), car-

diac (Bello et al., 2019), chest (Ye et al., 2022), and skin imag-

ing tasks (Kawahara et al., 2019). They utlize different expla-

nation forms and algorithms that aim to generate clinical end-

user-friendly explanations (Jin et al., 2021a), such as explaining

using features (heatmap (Bien et al., 2018), concept (Kim et al.,

2018)), examples (similar (Cai et al., 2019b), typical (Chen

et al., 2019), and counterfactual examples (Bigolin Lanfredi

et al., 2019)), and rules (decision tree (Wu et al., 2019). Indeed,

research has shown that explanations have the potential to help

clinical users to verify AI’s decisions (Ribeiro et al., 2016), re-

solve disagreements with AI during decision discrepancy (Cai

et al., 2019c), calibrate their trust in AI assistance (Bussone

et al., 2015; Zhang et al., 2020), identify potential biases (Caru-

ana et al., 2015), facilitate biomedical discoveries (Woo et al.,

2017), meet ethical and legal requirements (Amann et al., 2020;

1“Evidence-based medicine is the conscientious, explicit, judicious and rea-
sonable use of modern, best evidence in making decisions about the care of
individual patients.” (Masic et al., 2008)
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gdp), and ultimately facilitate doctor-AI communication and

collaboration to leverage the strengths of both (Wang et al.,

2021; Topol, 2019; Carter and Nielsen, 2017).

Applying XAI in clinical settings requires proper evaluation

to ensure the explanation technique is both technically sound

and clinically useful. Although existing works on XAI evalua-

tion proposed many real-world evaluation objectives and met-

rics (Sokol and Flach, 2020; Mohseni et al., 2021; Vilone and

Longo, 2021; Došilović et al., 2018; Jacovi and Goldberg, 2020;

Alvarez-Melis and Jaakkola, 2018; Hase and Bansal, 2020;

Doshi-Velez and Kim, 2017; Gilpin et al., 2018) (summarized

in Supplementary Material S2 Table 1), there is not a canoni-

cal criterion on the goodness of explanation, and it is unknown

which evaluation objectives are suitable for clinical applica-

tions. For the very limited emerging XAI evaluation works on

medical image tasks, such as on retinal (Singh et al., 2020a),

endoscopic (de Souza et al., 2021), and chest X-Ray (Saporta

et al., 2021)(Arun et al., 2021) imaging tasks, the evaluation

mainly focused on one criterion, which is how well the explana-

tion agrees with clinical prior knowledge, without justification

for the selection of such criterion and its clinical applicability.

This evaluation criterion may be confounded by factors outside

XAI methods themselves, such as model training and spurious

patterns in the data, as detailed in §2.2. Furthermore, there are

no clear guidelines on which evaluation objectives should be

applied and prioritized to correspond to clinical requirements

on AI explanation.

To answer Alex’s questions and provide concrete support for

the design and evaluation of clinical XAI, we propose the Clin-

ical XAI Guidelines, which were developed with dual clinical

and technical perspectives. The guidelines consist of five eval-

uating criteria: The form of explanation is selected based on

Guideline 1 (G1) Understandability and G2 Clinical rele-

vance. The specific explanation technique for the selected form

is chosen based on G3 Truthfulness, G4 Informative plau-

sibility, and operational considerations on G5 Computational

efficiency. Following the guidelines, we conducted a system-

atic evaluation of 16 commonly-used feature attribution map

(heatmap) techniques on two multi-modal medical image tasks.

We also formulated a novel and clinically pervasive problem of

multi-modal medical image explanation, which is a generalized

form of single modal medical image explanation. We proposed

the XAI evaluating metrics for this novel problem accordingly.

The evaluation showed existing heatmap methods met G1, par-

tially met G2. But they did not meet G3 and G4, which suggests

they are inadequate for clinical use.

Our key contributions are:

1. We propose the Clinical XAI Guidelines grounded in both

clinical and technical perspectives. The guidelines sup-

port the selection and design of clinically viable XAI tech-

niques for medical imaging tasks.

2. We conduct a systematic evaluation of multiple feature

attribution map XAI algorithms on two medical imaging

tasks to give a wholistic evaluation of their adherence to

the guidelines.

3. Departing from the de-facto single modality explanation,

we propose the clinically important but technically ignored

problem of multi-modal medical image explanation and

propose a novel metric: modality-specific feature impor-

tance (MSFI) to quantify and automate physician assess-

ment of explanation plausibility.

Roadmap. The manuscript is organized as follows: we first

present the clinical XAI guidelines in §2, with its key points

highlighted in Table 1 and Fig. 1. We then present the sys-

tematic evaluation of 16 existing heatmap explanation methods

based on the guidelines, with evaluation setup (§3), evaluation

methods (§4), results (§5), and discussions (§6).

2. Clinical Explainable AI Guidelines

By leveraging collective expertise in AI, clinical medicine,

and human factor analysis, we developed the Clinical XAI

Guidelines based on a thorough physician user study, our pi-

lot XAI evaluation experiments (Jin et al., 2022, 2021b), and

literature review (Supplementary Material S2 Table 1). The

physician user study was conducted with 30 neurosurgeons on
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a glioma grading XAI prototype (Fig 2). We collected physi-

cians’ quantitative ratings on the heatmap explanation, and

qualitative comments on the XAI system from the interview

sessions and open-ended questionnaire. The qualitative data

were used as the guidelines support from clinical aspect. The

detailed user study findings and method are in Supplementary

Material S1, and its related supporting sections were referred in

the paper starting with ‘U’.

Next, we present the Clinical XAI Guidelines, which is a

checklist of five evaluating objectives to optimize a clinical XAI

technique. They are categorized into three considerations: clin-

ical usability, evaluation, and operation. For each objective in

the guidelines, we list its key references from our user study

or literature. The methods of assessment are also described to

help identify if the objective is met. The guidelines and their

key points are summarized in Table 1. The full version of the

guidelines is in the Appendix.

2.1. Clinical usability considerations

Guideline 1: Understandability.

The format and context of an explanation should be easily

understandable by its clinical users. Users do not need to have

technical knowledge in machine learning, AI, or programming

to interpret the explanation.

Guideline 2: Clinical relevance.

The way physicians use explanations is to inspect the AI-

based evidence provided by the explanation, and incorporate

such evidence in their clinical reasoning process for down-

stream tasks, such as assessing the validity of AI decision,

making a final decision on the case, improving their problem-

solving skills, or making scientific discoveries (U2. Clinical

utility of explainable AI; U1. Clinical utility of AI). To make

XAI clinically useful, the explanation information should be

relevant to physicians’ clinical decision-making pattern, and

can support their clinical reasoning process.

For diagnostic/predictive tasks on medical images, physi-

cians’ image interpretation process includes two general steps:

1) feature extraction: physicians first perform pattern recogni-

tion to localize key features and identify pathology of these fea-

tures; 2) reasoning on the extracted features: physicians per-

form medical reasoning and construct diagnostic hypotheses

(differential diagnosis) based on the image feature evidence. A

clinically relevant explanation should provide information cor-

responding to the above process, so that physicians can incor-

porate the explanation information into their medical image in-

terpretation process (U3. Clinical requirements of explainable

AI).

2.2. Evaluation considerations

Guideline 3: Truthfulness.

Explanation should truthfully reflect the model decision pro-

cess. This is the fundamental requirement for a clinically ori-

ented explanation, and an explanation method should fulfill the

truthfulness requirement first prior to G4: Informative plausi-

bility.

Counterexample:

One of the main clinical utilities of explanation is that clini-

cal users intuitively assess the plausibility of explanations (G4)

to decide whether to take or reject the AI suggestion, and cali-

brate their trust in AI’s current prediction on the case, or the AI

model in general accordingly (U2.3). Users do so with an im-

plicit assumption that explanations are the true representation

of the model decision process. If the truthfulness criterion is

violated, two consequences may occur during physicians’ use

of explanation:

1. Clinical users may mistakenly reject AI’s correct sugges-

tion merely for the poor performance of the XAI method, which

shows an unreasonable explanation.

2. If an XAI method is proposed or selected based on expla-

nation plausibility objective only, rather than help clinical users

to verify the decision quality, the explanation can be optimized

to deceive clinical users with its seemingly plausible explana-

tion, despite the wrong prediction from AI (Critch and Krueger,

2020).

Assessment method:

The most common way to assess explanation truthfulness for

feature attribution XAI methods in the literature is to gradually

add or remove features from the most to the least important ones
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Consideration Clinical XAI Guidelines Ways of Assessment Key References

Clinical
Usability

G1: Understandability
Explanations should be easily
understandable by clinical users
without requiring technical
knowledge.

Sketch explanation forms and
show them to clinical users.

Jin et al. (2021a), Sokol and
Flach (2020); U3.3: Making AI
transparent by providing
information on performance,
training dataset, and decision
confidence

G2: Clinical relevance
Explanation should be relevant to
physicians’ clinical
decision-making pattern, and can
support their clinical reasoning
process.

Talk to or sketch prototypes
with clinical users, to inspect if
the explanation corresponds to
their clinical reasoning process.

U2.2. Resolving disagreement;
U3. Clinical requirements of
explainable AI

Evaluation
G3: Truthfulness
Explanations should truthfully
reflect the AI model decision
process. This is the prerequisite for
G4.

Cumulative feature
removal/addition test (Yin
et al., 2021; Yeh et al., 2019;
Hooker et al., 2019; Samek
et al., 2017; Lundberg et al.,
2020; Alvarez-Melis and
Jaakkola, 2018); Synthetic
dataset with known
discriminative features as the
ground truth (Doshi-Velez and
Kim, 2017; Kim et al., 2018;
Gilpin et al., 2018).

Jacovi and Goldberg (2020);
Sokol and Flach (2020); Critch
and Krueger (2020); U2.3.
Verifying AI decision, and
calibrating trust

G4: Informative plausibility
Users’ judgment on explanation
plausibility may inform users about
AI decision quality, including
potential flaws or biases.

Statistical test on the
correlation between AI decision
quality measure and
explanation plausibility
measure (Adebayo et al., 2022;
Saporta et al., 2021).

Jacovi and Goldberg (2020),
Doshi-Velez and Kim (2018);
U2. Clinical utility of
explainable AI; U5. Clinical
assessment of explainable AI

Operation
G5: Computational efficiency
The speed to generate an
explanation should be within
clinical users’ tolerable waiting
time on the given task.

Understand how time sensitive
the clinical task is, and record
speed and computational
resources to generate an
explanation.

Sokol and Flach (2020);
U1.2.1: Decision support for
time-sensitive cases, and hard
cases

Table 1. The Clinical Explainable AI Guidelines for the design and evaluation of clinical explainable AI. Ways of assessment provides existing evaluating
methods as references to assess if a guideline criterion is met. We list key references which supported development of the guidelines.
G - Guidelines, U - Physician user study findings (in Supplementary Material S1)



6 W. Jin et al. /Medical Image Analysis (2022)

according to an explanation, and measure the model perfor-

mance change (Yin et al., 2021; Yeh et al., 2019; Hooker et al.,

2019; Samek et al., 2017; Lundberg et al., 2020; Alvarez-Melis

and Jaakkola, 2018; DeYoung et al., 2020). Another way is

to construct synthetic evaluation datasets in which the ground-

truth knowledge on the model decision process from input fea-

tures to prediction is known and controlled (Doshi-Velez and

Kim, 2017; Kim et al., 2018; Gilpin et al., 2018).

Guideline 4: Informative plausibility.

The ultimate use of an explanation is to be interpreted and

assessed by clinical users. Physicians intuitively use the assess-

ment of explanation plausibility or reasonableness (i.e.: how

reasonable the explanation is based on its agreement with hu-

man prior knowledge on the task) as a way to evaluate AI de-

cision quality. This then allows multiple clinical utilities with

XAI, including verifying AI’s decisions (U2.3), calibrating trust

in AI (U2.3), ensuring the safe use of AI, resolving disagree-

ment with AI (U2.2), identifying potential biases, and making

medical discoveries (U2.4). Informative plausibility assesses

whether an XAI method can achieve its utility in helping users

identify potential AI decision flaws and/or biases, i.e.: a plau-

sible explanation for a right decision, and an implausible ex-

planation for a wrong decision of AI. G3 Truthfulness is the

gatekeeper of G4 Informative plausibility to guarantee the ex-

planation truthfully represents the AI decision process.

Assessment method:

To test whether explanation plausibility is informative to help

users identify AI decision errors and biases, AI designers can

assess the correlation between AI decision quality measures

(such as model performance, calibrated prediction uncertainty,

prediction correctness, and quantification of biased patterns)

and plausibility measures (Adebayo et al., 2022; Saporta et al.,

2021).

Since human assessment of explanation plausibility is usu-

ally subjective and susceptible to biases (U5.2. Bias and limita-

tion of physicians’ quantitative rating), AI designers may con-

sider quantifying the plausibility measure by abstracting the hu-

man assessment criteria into computational metrics for a given

task. The quantification of human assessment is not meant to di-

rectly select or optimize XAI methods for clinical use. Rather,

XAI methods should be optimized for their truthfulness mea-

sures (G3). Quantifying plausibility is a means to validate the

explanation’s informativeness, i.e.: the effectiveness of XAI

methods in their subsequent clinical utility to reveal AI deci-

sion flaws and/or biases, but not an XAI evaluation end goal in

itself. Quantifying plausibility can make such informativeness

validation process automatic, reproducible, standardizable, and

computationally efficient. Similarly, the human annotation of

important features according to physicians’ prior knowledge,

which is used to quantify plausibility, cannot be regarded as the

“ground truth” of explanation, because explanations (given that

they fulfill G4 Truthfulness) are still acceptable even if they are

not aligned with human prior knowledge, but reveal the model

decision quality or help humans identify new patterns and make

biomedical discoveries.

2.3. Operational consideration

Guideline 5: Computational efficiency

Since many AI-assisted clinical tasks are time-sensitive de-

cisions (U1.2.1: Decision support for time-sensitive cases, and

hard cases), the selection or proposal of clinical XAI techniques

need to consider the computational time and resources. The

wait time for an explanation should not be a bottleneck for the

clinical task workflow.

3. Evaluation problem setup

In the previous section, we presented the Clinical XAI Guide-

lines. Next, we apply the guidelines to a specific problem on

multi-modal medical image explanation. Multi-modal medical

images, such as multi-parametric MRI, have indispensable di-

agnostic value in clinical settings. Nevertheless, their related

explanation problem has not yet been explored in the tech-

nical community. We conduct a systematic evaluation on 16

commonly-used XAI methods to inspect whether their explana-

tions on multi-modal medical images can fulfill the five objec-

tives outlined in the Clinical XAI Guidelines and can be applied

clinically.
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3.1. Multi-modal medical imaging: clinical interpretation,
learning, and explanation

Our evaluation focuses on the novel problem of multi-modal

medical image explanation. Multi-modal medical image expla-

nation can be regarded as a generalized form of single-modal

medical image explanation. We present the clinical image in-

terpretation process of multi-modal image, the clinical require-

ments for multi-modal image explanation, and different model

learning paradigms on multi-modal medical image data.

3.1.1. Multi-modal medical images and their clinical interpre-
tation

Multi-modal medical images consist of multiple image

modalities or channels, where each modality captures a unique

signal of the same underlying cells, tissues, lesions, or or-

gans (Martı́-Bonmatı́ et al., 2010). Multi-modal images widely

exist in the biomedical domain. For example, different pulse

sequences of magnetic resonance imaging (MRI) technique —

T1 weighted, T2 weighted, or fluid-attenuated inversion re-

covery (FLAIR) modalities; dual-modality imaging of positron

emission tomography-computed tomography (PET-CT) (Beyer

et al., 2002); CT images viewed at different levels and win-

dows to observe different anatomical structures such as bones,

lungs, and other soft tissues (Harris et al., 1993); multi-modal

endoscopy imaging (Ray, 2017); photographic, dermoscopic,

and hyper-spectral images of a skin lesion (Kawahara et al.,

2019; Zherebtsov et al., 2019); multiple stained microscopic or

histopathological images (Long et al., 2020; Song et al., 2013).

To interpret multi-modal images, doctors compare and com-

bine modality-specific information to make diagnoses and dif-

ferential diagnoses. For instance, in a radiology report on MRI,

radiologists usually observe and describe anatomical struc-

tures in T1 modality, and pathological changes in T2 modal-

ity (Cochard and Netter, 2012; Bitar et al., 2006); doctors can

infer the composition of a lesion (such as fat, hemorrhage, pro-

tein, fluid) by combining its signals from different MRI modal-

ities (Patel et al., 2016). In addition, some imaging modalities

are particularly crucial for the diagnosis and management of

certain diseases, such as a contrast-enhanced modality of CT or

MRI for a suspected tumor case, and diffusion-weighted imag-

ing (DWI) modality MRI for a suspected stroke case (Lansberg

et al., 2000).

3.1.2. Clinical requirements for multi-modal medical image ex-
planation

We summarize our findings on the clinical requirements for

multi-modal medical image explanation based on our user study

with neurosurgeons (Supplementary Material S1) on a glioma

grading task with multi-modal brain MRI.

To assess the plausibility of multi-modal explanation, physi-

cians require the explanation to 1) prioritize the important im-

age modality for the model’s decision, and such prioritization

may or may not necessarily need to be in concordance with

physicians’ prior knowledge on modality prioritization; and 2)

capture the modality-specific features. Such features may or

may not totally align with doctors’ prior knowledge, but should

at least be a subset and not to deviate too much from clinical

knowledge.

3.1.3. Multi-modality learning

There are three major paradigms to build convolutional neu-

ral network (CNN) models that learn from multi-modal med-

ical images by fusing multi-modal features at the input-level,

feature-level, or decision-level (Xu, 2019). Our evaluation cov-

ered two fusion settings at the input-level (the brain tumor

grading task) and feature-level (the knee lesion identification

task). For multi-modal fusion at the input-level, the multi-

modal images are stacked as input channels to feed a CNN.

The modality-specific information is fused by summing up the

weighted modality value in the first convolutional layer. For

multi-modal image fusion at the feature-level, each imaging

modality is fed to its CNN branch individually to extract fea-

tures first, and the image features are aggregated at a deeper

layer.

3.2. Clinical task, data, and model

We include two clinical tasks in our evaluation on multi-

modal medical image explanation: glioma grading on brain

MRI, and knee lesion identification on knee MRI. Next, we de-

scribe the clinical task, medical imaging dataset, and the train-

ing of CNN models prepared for the evaluation.
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3.2.1. Glioma grading task

Clinical task. As a type of primary brain tumors, gliomas are

one of the most devastating cancers. Grading gliomas based

on MRI provides physicians indispensable information on a pa-

tient’s treatment plan and prognosis. We focus on the task to

classify gliomas into lower-grade (LGG) or high-grade gliomas

(HGG).

Data. We used the publicly available BraTS 2020

dataset (Bakas et al., 2017) and a BraTS-based synthetic

dataset (described in §4.3.3). Both are multi-modal 3D

(BraTS) or 2D (synthetic) MR images that consist of four

modalities of T1, T1C (contrast enhancement), T2, and

FLAIR. The BraTS dataset contains physician annotated

glioma localization masks that were used in the plausibility

quantification.

Model. For the BraTS dataset, we trained a VGG-like (Si-

monyan and Zisserman, 2015) 3D CNN with six convolu-

tional layers. It receives multi-modal 3D MR images X ∈

R4×240×240×155 of MR modality, width, height, and depth respec-

tively. We split the data into a training, validation, and test set

with a 65%, 15%, 20% split ratio. We trained five models us-

ing the same train/validation dataset and training scheme with

different random seeds. We used a weighted sampler to handle

the imbalanced data. The models were trained with a learning

rate = 0.0005, batch size = 4. And training epoch was selected

based on the accuracy on validation data. The average accuracy

on the test set for the five models is 89.46 ± 1.99%.

For the synthetic glioma dataset, we fine-tuned a pre-trained

DenseNet121 model (Huang et al., 2017) that receives 2D

mutli-modal MRI input slices of X ∈ R4×256×256 that rep-

resents MR modalty, width and height. We used the same

training strategies as described above. The model achieves

95.70 ± 0.06% accuracy on the test set.

3.2.2. Knee lesion identification task

Clinical task. MRI is the workhorse in diagnosing knee disor-

ders with high accuracies (Rosas and Smet, 2009). We focus on

the task of identifying meniscus tear vs. intact based on knee

MRI.

Data. We used the publicly available knee MRI dataset MR-

Net (Bien et al., 2018). It consists of three modalities showing

the knee structure from the coronal, sagittal, and axial view.

The coronal view can be T1 weighted, or T2 weighted with fat

saturation. The sagittal view is proton density (PD) weighted,

or T2 weighted with fat saturation. Finally, the axial view is PD

weighted with fat saturation.

We use bounding boxes of the meniscus as the representation

of human prior knowledge in the explanation plausibility quan-

tification. They were annotated by the first author who holds

an M.D. degree based on knee MRI lesion interpretation princi-

ples (Rosas and Smet, 2009). The bounding boxes are not exact

annotations that localize the specific tear lesion, but only out-

line the anatomical location of the lateral and medial meniscus

as a whole. This is meant to be closer to the practical real-world

XAI evaluation scenario where only the least amount of anno-

tation effort and domain expertise are required.

Model. We used the same model architecture and training

paradigm from the third place of MRNet challenge (Bien et al.,

2018), which fused multi-modal information at the feature

level. We trained five models by only varying their random

states of parameter initialization. The model performance area

under the curve (AUC) on the validation set is 0.8395± 0.0107,

which is equivalent to the reported ones in Bien et al. (2018).

The test AUC, however, is lower: 0.7934 ± 0.0162.

3.3. Post-hoc feature attribution explanation methods

We chose feature attribution explanation methods based on

user study assessment on G1 Understandability (detailed in

Section §4.1). For feature attribution map methods, we focus

on methods that are post-hoc. This group of methods is a type

of proxy models that probe the model parameters and/or input-

output pairs of an already deployed or trained black-box model.

In contrast, the ante-hoc heatmap methods – such as attention

mechanism – are predictive models with explanations baked
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into the training process. We leave out the ante-hoc methods be-

cause such explanations are entangled in its specialized model

architecture, which would introduce confounders in the evalua-

tion. We include 16 post-hoc XAI algorithms in our evaluation,

which belong to two categories:

• Gradient-based: Gradient (Simonyan et al., 2014),

Guided BackProp (Springenberg et al., 2015), Grad-

CAM (Selvaraju et al., 2017), Guided GradCAM (Sel-

varaju et al., 2017), DeepLift (Shrikumar et al., 2017a),

InputXGradient (Shrikumar et al., 2017b), Integrated Gra-

dients (Sundararajan et al., 2017), Gradient Shap (Lund-

berg and Lee, 2017), Deconvolution (Zeiler and Fergus,

2014), Smooth Grad (Smilkov et al., 2017)

• Perturbation-based: Occlusion (Zeiler and Fergus, 2014;

Zintgraf et al., 2017), Feature Ablation, Shapley Value

Sampling (Castro et al., 2009), Kernel Shap (Lundberg

and Lee, 2017), Feature Permutation (Fisher et al., 2019),

Lime (Ribeiro et al., 2016)

A detailed review of these algorithms and heatmap post-

processing method are in Supplementary Material S22.

4. Evaluation methods

We present the systematic evaluation to inspect whether the

commonly-used heatmap methods can be applied clinically to

explain model decisions on multi-modal medical images. The

evaluation follows the clinical XAI guidelines (§ 2) to ensure

the evaluation results can be an indicator for their suitableness

in clinical settings.

4.1. Evaluating G1: Understandability

We applied the end-user XAI prototyping method (Jin et al.,

2021a) and asked our clinical collaborator to comment and se-

lect understandable explanation forms. Based on the neurosur-

geon’s feedback and XAI technique availability, we targeted the

explanation form of feature attribution map (namely, heatmap).

2Code is available at: http://github.com/weinajin/multimodal explanation

4.2. Evaluating G2: Clinical relevance

To further identify the clinical relevance of heatmap expla-

nation in the clinical usage scenario, we built an XAI prototype

(Fig. 2) and conducted a user study with neurosurgeons. The

user study method and findings are detailed in Supplementary

Material S1.

Fig. 2. XAI prototype for the user study evaluation on G2 Clinical rele-
vance.

4.3. Evaluating G3: Truthfulness

For the truthfulness assessment, we conducted cumulative

feature removal and modality importance (MI) evaluation for

the two clinical tasks, and proposed two novel metrics ∆AUPC

and MI correlation respectively. We also conducted a synthetic

data experiment on the glioma grading task.

4.3.1. Cumulative feature removal

To test if the heatmap highlighted regions are true impor-

tant features to the model’s decision, we cumulatively removed

the input image features from the most to the least impor-

tant ones according to the feature importance ranking quan-

http://github.com/weinajin/multimodal_explanation
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Fig. 3. Feature perturbation curves for the cumulative feature removal
experiment. Feature perturbation curves in solid line is the model per-
formance deterioration for an XAI method H , and curves in dashed line
is the XAI method counterpart baselines Hb of random feature removal.
The random baseline experiment were repeated for 15 times, thus the
dashed line also has its 95% confidence interval indicated as translu-
cent error bands. We show plots of the XAI method that has the high-
est (blue) and lowest ∆AUPC score (red curve) from a model for both
clinical tasks. AUPC(Hb) and AUPC(H) which are used in the calcu-
lateion of ∆AUPC is also indicated on the plot for each XAI method:
∆AUPC = AUPC(Hb) − AUPC(H).

tile of an XAI algorithm H . The removed features are re-

placed with a constant value (0 for glioma task, and modality

mean for knee task). We then plotted a feature perturbation

curve (PC) (Fig. 3) that shows the relationship of the cumu-

lative feature removal to the model performance metric (accu-

racy for the glioma task, and AUC for the knee task). The area

under PC (AUPC(H)) can be used to quantify the degree of

performance deterioration during cumulative feature removal

process, with an XAI method H that indicates a more accu-

rate important feature ranking will lead to a faster performance

deterioration, thus a smaller AUPC. We proposed a new met-

ric ∆AUPC (difference of the area under the feature perturba-

tion curve) defined as: ∆AUPC(H) = AUPC(Hb)−AUPC(H),

where AUPC(H) and AUPC(Hb) are the area under the feature

perturbation curve of an XAI method H and its correspond-

ing baseline Hb. ∆AUPC slightly modifies the above cumula-

tive feature removal method in literature (Yin et al., 2021; Yeh

et al., 2019; Hooker et al., 2019; Samek et al., 2017; Lundberg

et al., 2020; Alvarez-Melis and Jaakkola, 2018) by introduc-

ing a random baseline AUPC(Hb) for fair comparison among

different XAI methods. For an XAI methodH , its correspond-

ing random baseline Hb is generated by a random permutation

of H . For different XAI methods H , the absolute numbers of

highlighted image pixels/voxels are different, thus the perfor-

mance deterioration measure may be confounded by the num-

ber of highlighted image regions. ∆AUPC overcomes this to

quantify the relative performance deterioration by comparing

AUPC(H) with the AUPC of its corresponding random base-

line Hb. An XAI algorithm with a larger ∆AUPC indicates

it can better identify important features for model prediction

compared with its random baseline.

4.3.2. Modality importance

For multi-modal medical image explanation, we want to as-

sess how truthfully a heatmap reflects the modality importance

information used in the model decision process. This corre-

sponds to the clinical requirements on modality prioritization

(U4.2. The role and prioritization of multiple modalities). We

first calculate the ground truth modality importance score using

Shapley value method, then calculate the correlation between

modality-wise sum of heatmap value and the ground truth as

the modality importance correlation (MI correlation).

To determine the ground-truth modality importance, we use

Shapley value from cooperative game theory (Shapley, 1951),

due to its desirable properties such as efficiency, symmetry, lin-

earity, and marginalism. In a set of M modalities, Shapley value

treats each modality m as a player in a cooperative game play.

It is the unique solution to fairly distribute the total contribu-

tions (in our case, the model performance) to each individual

modality m.

We define the modality Shapley value φm to be the ground

truth modality importance score for a modality m. It is calcu-

lated as:

φm(v)=
∑

c⊆M\{m}

|c|!(M − |c| − 1)!
M!

(v(c ∪ {m}) − v(c)), (1)

where v is the modality-specific performance metric (accuracy

for the glioma task, and AUC for the knee task), and M\{m}

denotes all modality subsetsM not including modality m. We

constructed a modality subset c by setting all values in a modal-

ity to 0 for modalities that were not included in the subset.

To measure the agreement of heatmaps’ modality importance

value with the ground truth modality Shapley value, for each
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heatmap, we define the estimated MI as the modality-wise sum

of all positive values in the heatmap. MI correlation measures

the MI ranking agreement between the ground-truth φ and the

estimated MI, calculated using Kendall’s Tau-b ranking corre-

lation.

4.3.3. Synthetic data experiment

The idea of constructing synthetic data to validate the truth-

fulness of an XAI method is that, we have the full control of the

ground truth features that the model learned for its prediction,

therefore, the ground truth features are also the ground truth for

model decision rationale we want the explanation to capture.

We can then assess the agreement between the explanation and

the ground truth features using the same plausibility measure as

detailed in § 4.4.1).

For multi-modal medical image tasks, according to the multi-

modal medical image interpretation pattern identified in our

user study (U4), we categorize the ground truth explanation in-

formation into: 1. the relative importance of each modality to

the prediction (i.e.: modality importance in §4.3.2); and 2. lo-

calization of the modality-specific features. We constructed a

synthetic multi-modal brain MRI dataset on the glioma grading

task with the two ground truth information corresponding to the

prediction label.

Specifically, to control the ground truth of feature localiza-

tion, we use a GAN-based (generative adversarial network) tu-

mor synthesis model developed by Kim et al. (2021) to generate

two types of tumors and their segmentation masks, mimicking

lower- and high-grade gliomas by varying their shapes (round

vs. irregular (ho Cho et al., 2018)).

To control the ground truth of modality importance, inspired

by (Kim et al., 2018), we set tumor features on T1C modality

to have 100% alignment with the ground-truth label, and on

FLAIR to have a probability of 70% alignment, i.e., the tumor

features on FLAIR corresponds to the correct label with 70%

probability. The rest modalities have 0 modality importance

value, as they are designed to not contain class discriminative

features. The model may learn to pay attention to either the

less noisy T1C modality, or the more noisy FLAIR modality, or

both. To determine their relative importance as the ground truth

modality importance, we test the well-trained model on two test

sets:

• TIC dataset: The dataset shows tumors only (without brain

background) on all modalities. And the tumor shape has 100%

alignment with ground-truth on T1C modality, and 0% align-

ment on FLAIR. Its test accuracy is denoted as AccT1C.

• FLAIR dataset: It has the same settings, but only differs in

that the tumor shape has 100% alignment with ground-truth on

FLAIR modality, and 0% alignment on T1C. Its test accuracy is

denoted as AccFLAIR.

The test performance AT1C and AFLAIR indicate the degree of

model reliance on that modality to make predictions. We use

them as the ground truth modality importance. On the test set,

AccT1C = 0.99, AccFLAIR = 0. In this way, we constructed a

model with known ground truth of modality important as 1 for

T1C, and 0 for the rest modalities. We then calculate the plau-

sibility metric as the measure of truthfulness for the synthetic

data.

4.4. Evaluating G4: Informative plausibility

Given an XAI method that meet G3: Truthfulness, to further

validate whether clinical users can use their own assessment on

explanation plausibility to judge decision quality and identify

potential errors and biases, next we assess whether the human

plausibility assessment is informative. We do so in two steps:

1) proposing a novel plausibility metric modality specific fea-

ture importance (MSFI) on multi-modal explanation task that

bypasses physicians’ manual assessment; and 2) testing the cor-

relation between plausibility metric and decision quality metric.

4.4.1. Quantifying plausibility

To quantify how reasonable the explanation is to human judg-

ment and facilitate subsequent validation of using such plausi-

bility information for AI decision verification, we used an ex-

isting metric feature portion (FP), and proposed a novel met-

ric modality-specific feature importance (MSFI) designed for

multi-modal medical image explanation based on its clinical

requirements (§4.3.3). Both metrics quantify the agreement of

heatmap highlighted regions with human prior knowledge.
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Fig. 4. Illustration of the novel modality importance correlation and MSFI metrics on multi-modal medical image explanation.

FP assesses, among the highlighted regions in the heatmap,

how many of them agree with human prior knowledge. It is

calculated as:

FP =
∑

i 1(Li > 0) ⊙ S i∑
i S i (2)

where S is a heatmap, with i denoting the spatial location. L is

the human-annotated feature masks, with Li > 0 outlining the

spatial location of the feature. 1 is the indicator function that

selects the heatmap values inside the feature mask.

To abstract the clinical requirements for multi-modal medical

image explanation (U4. Multi-modal medical image interpreta-

tion and clinical requirements for its explanation), we propose

a novel plausibility metric MSFI for multi-modal explanation

(Fig. 4). It combines the assessments of feature localization

with modality prioritization, by multiplying FP with modality

importance value modality-wise. Specifically, MSFI is the por-

tion of heatmap values S m inside the feature localization mask

Lm for each modality m, weighted by MI φm which is normal-

ized to [0, 1] to have a comparable range with FP.

ˆMSFI =
∑

m

φm

∑
i 1(Li

m > 0) ⊙ S i
m∑

i S i
m

, (3)

MSFI =
ˆMSFI∑

m φm
, (4)

where where ˆMSFI is unnormalized, and MSFI is the normal-

ized metric in [0, 1]. A higher MSFI score indicates a heatmap

is more agreeable with clinical prior knowledge regarding cap-

turing the important modalities and their localized features.

MSFI can be regarded as a general form of FP that generalized

the feature portion calculation from single-modality to multi-

modality images.

Instead of asking physicians to manually assess plausibility

for a few explanations (the questionnaire in Fig. 2 demonstrates

such process), whose rating may be susceptible to bias (U5.2.

Bias and limitation of physicians’ quantitative rating), quanti-

fying plausibility bypasses humans’ manual assessment, stan-

dardizes and automates the assessment process, and can assess

multiple XAI methods using one set of annotated data.

In addition, although plausibility quantification requires an-

notations to represent human prior knowledge, the human prior

knowledge annotation may not necessarily need to be as ex-

act as feature segmentation masks, because MSFI and FP only

penalize for regions outside the annotation mask3 L. There-

fore, the annotation can be in the form of segmentation masks,

bounding boxes, or landmarks. In our evaluation, we used tu-

mor segmentation masks for the glioma task, and bounding

boxes for the knee task. The annotations may not even need

to be annotated by humans. It can be generated by training an

3In comparison, we did not use the intersection over union (IoU) metric
commonly used in computer vision, because compared to MSFI or FP that
penalizes only for false positives, IoU also penalizes for false negatives, which
require the annotations to be exact.
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AI model on a few annotated data points, or be generated using

trained models on feature segmentation/localization tasks.

4.4.2. Testing for plausibility informativeness

The indispensable step after plausibility quantification is to

validate the clinical utility of using explanations to verify AI

decision quality. We measure AI decision quality by using 1)

the soft output probability, and 2) the hard thresholding model

prediction correctness on the two classification tasks. We then

test the correlation between prediction probability with plau-

sibility, and equal distribution of plausibility for different pre-

diction correctness groups. Unless otherwise stated, we use a

significance level α = 0.05 for two-sided statisitcal test.

4.5. Evaluating G5: Computational efficiency

We recorded the computational time to generate each

heatmap on a computer with 1 GTX Quadro 24 GB GPU and 8

CPU cores, and on a computing cluster with similar hardware

configurations.

5. Evaluation results

We report evaluation results on whether the commonly-used

16 heatmap methods are clinically feasible by fulfilling the

guidelines on the two clinical tasks with multi-modal medical

images. All results were reported on the test dataset.

5.1. Evaluating G1 Understandability and G2 Clinical rele-
vance

In our user study, although physicians did not express dif-

ficulty in understanding the meaning of heatmap as important

regions for AI prediction (G1: Understandability is met), the

heatmap explanation is not completely clinically relevant, as

physicians were perplexed by the highlighted areas regardless

of whether these areas align with their prior knowledge or not.

This may be due to heatmap explanation only performs half of

the clinical image interpretation step of feature localization, it

lacks pathological description of important features, let alone to

perform reasoning on these features (U3.1. Limitations of ex-

isting heatmap explanation). Therefore, heatmap explanation

only partially fulfills G2 Clinical relevance.

5.2. Evaluating G3: Truthfulness

The evaluation results on G3 Truthfulness of all three evalu-

ation experiments are shown in Table 2. The ∆AUPC metric on

cumulative feature removal experiment is a global metric that

runs on the whole test set, and we reported the metric mean ±

std of five models on the same test set, and used it to compare

the XAI method performances; whereas the other evaluating

metrics are local and run on individual data point, and we re-

ported their mean ± std of five models by aggregating all test

data points, and conduct Friedman and post-hoc Nemenyi test

to identify the top ranking XAI methods. Using Kendall’s Tau-

b ranking correlation, we also tested the performance ranking

(using the mean of a metric) correlation between the glioma

and knee tasks, to see if the performance on one task can be

generalized to another task.

For the cumulative feature removal experiment that exam-

ines the fine-grained feature-level explanation truthfulness of

XAI methods to the model decision process, the performances

of the examined XAI methods on glioma and knee tasks dif-

fer a lot: on the glioma task, Guided BackProp, Guided Grad-

CAM, Lime, Shapley Value Sampling, and Smooth Grad were

the top ranked algorithms with an average ∆AUPC around 0.5,

and their performances were relatively stable across different

models. Whereas on the knee task, all XAI methods performed

poorly with their ∆AUPC scores around 0, which indicates the

examined XAI methods did not differ from the baseline of ran-

dom heatmaps. In addition, when comparing the glioma and

knee tasks on the XAI method rankings based on mean ∆AUPC,

there was not a statistical significant correlation using Kendall’s

Tau-b (τb = 0.24, p = 0.31), indicating the performance of XAI

methods may only be specific to a task and not generalizable.

For the MI correlation experiment that examines the coarse-

grained modality-level explanation truthfulness of XAI meth-

ods to model decision process, on the glioma task, the impor-

tance ranking of heatmaps modalities showed weak to moder-

ate positive correlations with the ground-truth modality Shap-

ley values. Among the examined 13 XAI methods, there was a

statistically significant difference of mean MI correlation us-
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Cumulative feature removal Modality importance correlation Synthetic data
experiment

∆AUPC [-1, 1] MI correlation [-1, 1] MSFI [0, 1]

Glioma Knee Glioma Knee Synthetic
glioma

Deconvolution 0.38±0.14 -0.04±0.04 0.46±0.28 -0.47±0.51 0.04±0.02
DeepLift 0.16±0.10 NaN 0.60±0.33 NaN 0.22±0.23
Feature Ablation 0.34±0.11 -0.02±0.04 0.60±0.43 0.05±0.64 0.19±0.23
Feature Permutation -0.03±0.08 NaN NaN NaN 0.08±0.07
GradCAM 0.22±0.16 NaN NaN NaN 0.02±0.02
Gradient 0.09±0.02 -0.05±0.02 0.49±0.41 -0.52±0.51 0.19±0.13
Gradient Shap 0.18±0.12 -0.02±0.03 0.64±0.31 -0.29±0.54 0.22±0.19
Guided BackProp 0.53±0.09 -0.04±0.03 0.57±0.21 -0.44±0.53 ∗0.49±0.21
Guided GradCAM 0.53±0.09 NaN 0.56±0.23 NaN 0.42±0.29
InputXGradient 0.16±0.11 -0.05±0.03 0.64±0.29 -0.35±0.55 0.23±0.14
Integrated Gradients 0.18±0.12 -0.04±0.02 0.63±0.31 0.24±0.64 0.22±0.19
Kernel Shap 0.31±0.10 0.00±0.03 NaN ∗0.33±0.58 0.08±0.08
Lime 0.51±0.08 0.00±0.04 0.57±0.42 ∗0.35±0.58 0.05±0.07
Occlusion 0.21±0.08 -0.01±0.02 0.58±0.45 -0.32±0.54 0.22±0.25
Shapley Value Sampling 0.51±0.10 0.00±0.04 0.59±0.37 ∗0.35±0.50 0.10±0.10
Smooth Grad 0.48±0.08 -0.05±0.03 ∗0.72±0.24 -0.43±0.57 0.03±0.02

Table 2. Evaluation results on Guideline 3 - Truthfulness. The table shows mean ± std for each XAI algorithm on three evaluation metrics: ∆AUPC, MI
correlation, and MSFI on the synthetic data. Metrics have their range indicated. For all metrics, a higher value is better. Top three results on a metric
are bolded, with a ∗ indicating the XAI algorithm performed significantly better than others. “NaN” in the glioma task is due to the heatmap is not
modality-specific and the correlation is not computable. “NaN” in the knee task is due to the XAI method was not included in the evaluation. XAI methods
are in alphabetic order.

ing Friedman test, χ2(12) = 223.3, p < 0.001. A post-hoc

Nemenyi test showed only Smooth Grad had a statistical sig-

nificance higher performance than the rest XAI methods (p <

0.01). On the knee task, the examined 12 XAI methods showed

from moderate negative to weak positive correlations with the

ground-truth Shapley values, and there was a statistically sig-

nificant difference of mean MI correlation using Friedman test,

χ2(11) = 912.6, p < 0.001. A post-hoc Nemenyi test showed

Lime, Shapley Value Sampling, and Kernel Shap had a statis-

tical significance higher performance than the rest XAI meth-

ods (p < 0.01). Furthermore, the MI correlation performance

ranking on one task did not migrate to another, with a statis-

tically insignificant Kendall’s Tau-b ranking correlation test,

τb = 0.13, p = 0.65.

For the synthetic data experiment on the glioma task that

examines both modality- and feature-level truthfulness of XAI

methods to the model decision process, the MSFI scores were

generally in the low range, and no XAI method achieved an av-

erage MSFI score above 0.5. Among these, only Guided Back-

Prop outperformed other XAI methods with statistical signifi-

cance (p < 0.01) using a post-hoc Nemenyi test after a signifi-

cant Friedman test (χ2(15) = 1540.6, p < 0.001). Since the syn-

thetic data evaluation combined both the coarse-grained modal-

ity-level (MI correlation) and the fine-grained feature-level ex-

planation truthfulness (∆AUPC), we further tested whether the

XAI method performance on the synthetic data can be used to

guide the selection of XAI on the original real-patient data on

glioma task. Kendall’s Tau-b correlation tests showed that the

MSFI mean score ranking of the synthetic data experiment has

no statistically significant ranking correlation with MI correla-

tion (τb = 0.08, p = 0.77), and with ∆AUPC (τb = −0.05, p =

0.82).

In summary, on the glioma task, the only XAI methods that

outperformed others on feature-level (∆AUPC and MSFI on

synthetic data experiment) and modality-level (MI correlation)

explanation truthfulness evaluations are Guided BackProp. De-

spite this, the performances of the top XAI method was around

0.5 comparing to ground-truth or out-performing random base-
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line. Since there is no benchmark, and relative weights for in-

dividual evaluation are unknown, the fulfillment of G3 Truth-

fulness may be dependent on the specific task and its clinical

importance. On the knee task, all the examined XAI methods

failed to meet G3 Truthfulness due to their low evaluation per-

formances on both modality- and feature-level truthfulness. In

addition, the good-performing XAI method on one clinical task

did not generalize to another task.

5.3. Evaluating G4: Informative plausibility

5.3.1. Quantifying plausibility

Physicians’ average quantitative rating on heatmap quality

had a higher Pearson’s r correlation with MSFI (r(53) = 0.59,

p < 0.001) compared with FP (r(53) = 0.57, p < 0.001).

Therefore, we resorted to quantifying the human assessment

of explanation plausibility using MSFI score, while reporting

the results using FP measure in Supplementary S2. In addition,

physicians’ inter-rater agreement on the heatmap quality assess-

ment was low: Krippendorff’s Alpha is 0.528 (cutoff value ≥

0.667 (Krippendorff, 2004)), and Fleiss’ kappa is 0.009 (with

1 for perfect agreement and 0 for poor agreement). This indi-

cates that doctors’ judgment of heatmap quality could be very

subjective, which aligns with qualitative findings on U5.2. Bias

and limitation of physicians’ quantitative rating.

5.3.2. Testing for plausibility informativeness

Since G3 Truthfulness is the prerequisite for G4 on plau-

sibility informativeness, it is less meaningful to conduct plau-

sibility informativeness assessment for XAI methods that did

not fulfill G3 Truthfulness. Nevertheless, we reported the full

evaluation results for all XAI methods as a reference.

To examine the correlation between plausibility measure

MSFI and model prediction probability, we computed their non-

parametric Spearman correlation (Table 3). For the glioma

task, the plausibility measure MSFI of all XAI methods had a

weak to moderate positive correlation with the model prediction

probability, and the correlation were all statistically significant

(p < 0.001). Occlusion, Feature Ablation, and Input × Gra-

dient were the top three highly-correlated XAI methods. For

the knee task, all methods had a negative weak correlation with

model prediction probability that may or may not show statisti-

cal significance.

The above model output probability may not be well cali-

brated (Guo et al., 2017), thus may not be a good indicator for

model decision quality. We then resorted to model prediction

correctness as the definitive indicator for decision quality. Us-

ing the non-parametric Mann-Whitney U test (Mann and Whit-

ney, 1947), we tested the upper-tailed alternative hypothesis

that the distribution of MSFI metric on the correctly predicted

data group is significant higher than the incorrectly predicted

one. The resulting significance level for each XAI algorithm is

shown in Table 3. For some XAI methods such as Occlusion

and Feature Ablation, despite they showed statistically higher

MSFI scores on the right prediction data group compared to the

wrong prediction one, by further inspecting their distributions

(Fig. 5-top), the ranges of correctly and incorrectly predicted

data points largely overlapped with each other. This may hin-

der the application of XAI methods for clinical user to identify

potential decision flaw based on their plausibility judgment of

the explanation, because the right and wrong predictions could

have the same range of MSFI scores. For the knee task, all XAI

methods failed to reject the null hypothesis, with the right and

wrong prediction data points had similar MSFI score distribu-

tions (Fig. 5-bottom). Similar to the evaluation on G3, in G4

evaluation, the examined XAI methods did not exhibit the same

performance pattern on the glioma and knee task.

The testing for plausibility informativeness on glioma task

showed that, despite the overall range of the correctly and in-

correctly predicted data points overlapped with each other, for

some XAI methods, the Mann-Whitney U test still showed sta-

tistically higher MSFI for the correctly predicted data points

than the incorrectly predicted ones. A further analysis showed

that the statistical test result was confounded by different MSFI

distributions on the two classes of LGG and HGG: for all XAI

methods, both the predicted and ground-truth HGG class had

a significantly higher (p < 0.0005) MSFI score compared to

the predicted or ground-truth LGG class. The different distribu-

tions of MSFI on LGG and HGG classes influenced the results
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MSFI corerlation w/ pred. prob. Testing for plausibility informativeness - Glioma Testing for plausibility informativeness - Knee
Glioma Knee Stat. Sig. Right Pred. Wrong Pred. Stat. Sig. Right Pred. Wrong Pred.

Deconvolution 0.41 ∗ -0.08 ∗ NS 0.47
(0.44,0.49)

0.55
(0.44,0.57) NS 0.23

(0.22,0.24)
0.23

(0.22,0.24)

DeepLift 0.49 ∗ NaN ⋆
0.83

(0.79,0.85)
0.75

(0.55,0.81) NaN NaN NaN

FeatureAblation 0.59 ∗ -0.16 ∗ ⋆⋆
0.70

(0.66,0.75)
0.48

(0.29,0.67) NS 0.16
(0.15,0.16)

0.18
(0.17,0.19)

FeaturePermutation 0.19 ∗ NaN NS 0.29
(0.22,0.35)

0.21
(0.06,0.32) NaN NaN NaN

GradCAM 0.18 ∗ NaN NS 0.04
(0.04,0.05)

0.04
(0.02,0.05) NaN NaN NaN

Gradient 0.41 ∗ -0.08 ∗ NS 0.49
(0.46,0.51)

0.50
(0.33,0.54) NS 0.24

(0.24,0.25)
0.24

(0.24,0.25)

GradientShap 0.49 ∗ -0.09 ∗ ⋆
0.78

(0.75,0.80)
0.70

(0.52,0.76) NS 0.23
(0.22,0.23)

0.24
(0.22,0.24)

GuidedBackProp 0.41 ∗ -0.07 NS 0.78
(0.74,0.79)

0.76
(0.57,0.82) NS 0.25

(0.25,0.26)
0.25

(0.25,0.27)

GuidedGradCAM 0.37 ∗ NaN NS 0.82
(0.80,0.85)

0.80
(0.54,0.86) NaN NaN NaN

InputXGradient 0.57 ∗ -0.08 ∗ ⋆
0.77

(0.75,0.79)
0.69

(0.46,0.76) NS 0.23
(0.23,0.24)

0.24
(0.24,0.25)

IntegratedGradients 0.50 ∗ -0.08 ⋆
0.78

(0.75,0.82)
0.71

(0.51,0.76) NS 0.22
(0.21,0.23)

0.23
(0.22,0.23)

KernelShap 0.36 ∗ -0.13 ∗ NS 0.20
(0.16,0.23)

0.15
(0.03,0.35) NS 0.15

(0.15,0.16)
0.17

(0.16,0.18)

Lime 0.36 ∗ -0.13 ∗ NS 0.23
(0.19,0.27)

0.19
(0.12,0.25) NS 0.16

(0.16,0.17)
0.18

(0.17,0.18)

Occlusion 0.60 ∗ -0.07 ⋆ ⋆ ⋆
0.55

(0.54,0.58)
0.24

(0.14,0.44) NS 0.20
(0.19,0.21)

0.20
(0.19,0.21)

ShapleyValueSampling 0.53 ∗ -0.10 ∗ NS 0.58
(0.54,0.61)

0.38
(0.27,0.59) NS 0.17

(0.16,0.17)
0.18

(0.17,0.19)

SmoothGrad 0.36 ∗ -0.03 NS 0.39
(0.37,0.40)

0.39
(0.32,0.42) NS 0.24

(0.23,0.24)
0.24

(0.23,0.25)

Table 3. Evaluation results on Guideline 4 - Testing for plausibility informativeness. In the column: MSFI correlation with prediction probability, the
statistically significant Spearman’s correlations are marked with ∗, and bold text highlights the top three positively correlated XAI methods. In the
column: Testing for plausibility informativeness on glioma and knee task, we report the significant level and MSFI score (median and 95% confidence
interval) of right and wrong predictions. The statistical significance are from the upper-tailed Mann–Whitney U test: ⋆ indicates p < 0.025; ⋆⋆ for
p < 0.005; ⋆ ⋆ ⋆ for p < 0.0005; NS for not significant. “NaN” in the knee task is due to the XAI method was not included in the evaluation. XAI methods
are in alphabetic order.

on testing for informative plausibility. To remove the influence

of this confounder, we then conducted testing for plausibility in-

formativeness conditioned on each class, and it yielded similar

results as the above unconditioned one: when conditioned on

HGG prediction, only Occlusion and Feature Ablation showed

significant higher MSFI for the rightly predicted data compared

to the wrongly predicted ones, with p = 0.003 and 0.01 re-

spectively. None of the XAI methods showed statistical signifi-

cance when conditioned on LGG prediction. The visualization

of MSFI conditioned on either HGG or LGG prediction, how-

ever, still showed range overlapping for the right and wrong

predictions (Supplementary S2 Fig. 16). This indicates the ex-

amined XAI methods, either the unconditioned one or the one

conditioned on each predicted class, failed the testing for in-

formative plausibility. The same analysis on the knee task did

not show statistically different MSFI on right and wrong predic-

tions conditioned on each predicted class. The above analysis

is detailed in Supplementary S2 §4.3.2.

Based on the results on testing for plausibility informative-

ness, the examined XAI methods did not meet G4 Informative

plausibility neither on the glioma nor on the knee task.

5.4. Evaluating G5: Computational efficiency

The computational time spent in generating a heatmap is

shown in Table 4. The speed in generating a heatmap was stable

across the three datasets with different image dimensions (2D

and 3D) and model architectures. Some gradient-based meth-

ods that rely solely on back propagation can generate nearly

instant explanation, which enables their clinical use in real-

time interactive XAI systems. For some gradient-based and

all perturbation-based methods that require multiple sampling,
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Fig. 5. Evaluation results on Guideline 4 - Testing for plausibility informativeness. For each heatmap method (X-axis), the violin and swarm plots show
the plausibility quantification score distribution of MSFI for the right (blue, left) and wrong (red, right) predictions on the glioma (top) and knee task
(bottom). Each dot is a data sample in the test set, and we aggregate results from five similarly-trained models. Y-axis is the MSFI measure, with a higher
score indicating more agreeable of a heatmap with clinical prior knowledge on modality prioritization and feature localization. The black dashed lines
indicate the quartiles of each distribution.

Computational time
second

Glioma Synthetic
Glioma Knee

Deconvolution 2.1±1.2 1.3±0.0 2.6±2.1
DeepLift 4.6±2.0 2.2±0.0 NaN
FeatureAblation 82±25 58±1.5 98±102
FeaturePermutation 10.1±2.1 15.2±0.4 NaN
GradCAM 0.7±0.3 0.3±0.0 NaN
Gradient 2.2±1.3 1.1±0.0 2.6±2.2
GradientShap 7.8±3.3 5.0±0.1 2.8±2.2
GuidedBackProp 2.1±1.2 0.9±0.0 2.3±1.7
GuidedGradCAM 2.8±1.5 1.2±0.0 NaN
InputXGradient 2.1±1.2 1.1±0.0 2.6±2.2
IntegratedGradients 67±34 49±0.9 113±79
KernelShap 243±87 93±1.6 382±388
Lime 449±141 154±2.6 507±523
Occlusion 1713±21 27±3.5 672±255
ShapleyValueSampling2205±693 1595±228 1990±2021
SmoothGrad 14.4±6.8 9.5±0.1 24.1±16.7

Table 4. Evaluation results on Guideline 5 - Computational efficiency. We
report the mean ± std speed in second to generate a heatmap on a data
point. “NaN” in the knee task is due to the XAI method was not included
in the evaluation. The XAI methods are in alphabetic order.

their speed is > 10 seconds or even longer. Methods such as

Lime or Shapley Value Sampling need to take 7∼30 minutes

to generate a heatmap, depending on the specific use case and

XAI method parameter settings, the long wait time may prevent

their clinical use.

6. Discussions

6.1. Evaluated heatmap methods failed to meet the Clinical
XAI Guidelines

We conducted a systematic evaluation on 16 commonly-used

heatmap methods following the Clinical XAI Guidelines. Al-

though the heatmap explanations were easily understandable to

clinical users (G1), they only partially fulfilled G2 clinical rel-

evance, due to the missing of feature pathology descriptions in

the heatmap which corresponds to clinical image interpretation

process (§5.1). The examined heatmap methods did not reliably

exhibit the property of G3 Truthfulness on multiple models in

the two clinical tasks. Due to the failure of G3, G4 testing for
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informative plausibility also had a poor score. Most heatmaps

were computationally efficient regarding G5 that can generate a

heatmap within seconds, except for some sampling-based meth-

ods such as Shapley Value Sampling which may take more than

20 minutes.

Next, we discuss the computational evaluation results on G3

and G4 by referring to literature, and discuss potential research

directions and open research questions.

6.1.1. G3 Truthfulness

In G3, we evaluated whether the examined heatmaps can

correctly reveal important features for model decision process

at both coarse-grained modality level and fine-grained feature

level. None of the examined XAI methods fulfilled G3 on both

glioma and knee task. Our findings join a number of previ-

ous literature findings on the untruthfulness of post-hoc XAI

methods in natural image and MIA tasks (Adebayo et al., 2022,

2020, 2018; Zhou et al., 2021), in which they used modified

dataset with known ground truth of important features to diag-

nose spurious or biased features learned by the model. Prior lit-

erature hypothesized the reasons for the untruthfulness of post-

hoc explanation is that they are summarizing statistics that may

only reveal partial aspects of a model’s internal state, and the

actual decision process may be scattered throughout the net-

work (Chen et al., 2020), and called for inherently interpretable

AI model instead in high-stakes domains (Rudin, 2019). Both

post-hoc XAI and inherently interpretable AI models require

truthfulness assessment (Jacovi and Goldberg, 2020).

6.1.2. G4 Informative plausibility

In G4, we tested the MSFI correlation with two indicators

for model decision quality: 1) model output probability, and

2) model prediction correctness. For 1) model output probabil-

ity, on the glioma task, our assessment showed the plausibility

measure can be correlated with model prediction probability,

which aligns with prior literature finding on XAI evaluation

for chest X-ray task (Saporta et al., 2021). For 2) testing in-

formative plausibility using model prediction correctness, our

results showed existing post-hoc XAI methods can hardly re-

veal information on model decision correctness, on both the

glioma and knee task. This echoes with prior literature find-

ing on chest X-ray task that showed no strong correspondence

between model generalization performance and heatmap plau-

sibility measure (Viviano et al., 2021).

The above findings may indicate that existing post-hoc

heatmap methods may be able to reveal information that are ob-

vious, or known to the model (such as the prediction label and

its probability), but not good at revealing information that are

difficult to estimate, or unknown to the model (such as predic-

tion correctness, quality, or reliability). The former information

on prediction probability is straightforward for clinical users to

obtain by reading the model output, without the extra effort to

interpret and assess its explanation; whereas the latter informa-

tion on decision quality has more clinical significance as shown

in our user study (U2. Clinical utility of explainable AI), and is

more relevant to the clinical users to spend extra time interpret-

ing the explanation and assessing its plausibility.

Generating explanations that can be informative for model

decision quality is a challenging and clinically important prob-

lem. This problem is closely related to uncertainty estimation

(UE) for deep learning models (Gal and Ghahramani, 2016)

that estimates model decision certainty especially when it is

unknown. Comparing to providing users with a UE number,

generating informative explanations for model decision quality

can provide more contextual information to help users under-

stand why, how, and when AI works and does not work. De-

spite its clinical importance, proposing and evaluating XAI for

model decision verification (G4 Informative plausibility) is an

underexplored problem, and there are only a few works (Slack

et al., 2021; Li et al., 2020; Patro et al., 2019) that combine

UE with XAI by bringing a probabilistic Bayesian view to XAI

algorithms. But these proposed XAI methods did not incorpo-

rate plausibility measure as a way to quantify explanation un-

certainty and its corresponding model decision uncertainty, and

their ability to fulfill G4 on revealing model decision quality

with plausibility measure is unknown and not assessed. Our

Clinical XAI Guidelines and evaluation propose this open and

clinically important problem to the research community.
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6.2. Comparison and difference between the guideline criteria

Both G1 Understandability and G2 Clinical relevance are

qualitative assessments with respect to clinical applicability of

the general form of heatmap explanation, and are non-specific

to a heatmap method and the content it generated. In contrast,

the other guidelines, G3 Truthfulness, G4 Informative plau-

sibility, and G5 Computational efficiency are quantitative and

computational assessments of the explanation content and are

specific to each XAI method which generate the content within

a specific explanation form. The explanation form can be re-

garded as different modalities of the explanation information,

such as explaining using features, examples, or rules. Whereas

the explanation content is the specific information expressed

through an explanation form. Moreover, although G4 Infor-

mative plausibility and G2 Clinical relevance both focus on

the aspect of human interpretation of the explanation, plausibil-

ity focuses on the content of explanation, whereas G2 Clinical

relevance assesses a group of XAI methods that are represented

in the same explanation form. An explanation that has a high

score in G4 may not be clinically relevant (G2). For exam-

ple, the content of a heatmap assessed by a plausibility measure

may be very indicative for model decision quality, thus it has

a high score for G4. But the general form of heatmap is not

completely clinically relevant (G2), because it only provides

localization information without information on feature pathol-

ogy (as detailed in Section 5.1). Similarly, an explanation that

is clinically relevant (G2) may not always correspond to a high

score in G4. For example, if a group of XAI algorithms pro-

vides information on both feature localization and pathology

identification, they are considered to be clinically relevant (G2).

Within this group, different XAI algorithms may have different

performances on their G4 scores, depending on how well the

explanation plausibility correlates with AI decision quality.

Since G1 Understandability and G2 Clinical relevance as-

sess the explanation form, an explanation form that passed G1

and G2 can be used to select or propose a group of XAI al-

gorithms that generate the same form. For example, our user

study discovered a clinically relevant explanation form of fea-

ture attribution: an explanation should at least present feature

information on localization and pathology description (§2.1).

This may cover the explanation form of segmentation maps la-

belled with different pathology (De Fauw et al., 2018), or a

heatmap coupled with pathological description. Any XAI al-

gorithms that generate such explanation forms are considered

to fulfill G2. Some user studies have examined or identified

explanation forms on understandability (Jin et al., 2021a; Cai

et al., 2019a,b) and clinical relevance (Jin and Hamarneh). User

studies like these may enable AI developers to bypass G1 or G2

assessment by directly applying the relevant user study findings

from the literature to their individual tasks. They can also serve

as a starting point for the clinical AI development team before

communicating with clinical users to assess G1 and G2.

Much of the literature on XAI evaluation considers the plau-

sibility measure as a requirement (Singh et al., 2020a; de Souza

et al., 2021; Saporta et al., 2021; Arun et al., 2021). The Clin-

ical XAI Guidelines do not include the stand-alone plausibility

as a clinical requirement, because G1 Understandability and

G2 Clinical relevance already regulate an XAI to be clinically

viable in its explanation form, and the explanation content it-

self does not need to align with human knowledge (measured

by plausibility). Instead of making an explanation plausible to

users to gain their trust with a shortcut (i.e., by bypassing the

G3 Truthfulness assessment), the Clinical XAI Guidelines fo-

cus on the clinical utility of user’s plausibility assessment, and

inspect whether users’ plausibility assessment can shed light on

the downstream clinical utilities (U2. Clinical utility of explain-

able AI), and help users answer their questions following their

plausibility assessment (G4 Informative plausibility), such as

enabling users to verify model decision, to diagnose model de-

cision flaws and biases, or to discover new knowledge. All these

utilities do not require the explanation content to align with hu-

man prior knowledge. In fact, we argue that it may be danger-

ous to select or optimize an XAI method solely on the basis of

its plausibility measure. As observed in our user study and in

prior literature (Critch and Krueger, 2020), a potential conse-

quence is the XAI method may be optimized to deceive users
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and make them overtrust a wrong AI decision with its seem-

ingly plausible explanation, rather than help users to verify the

decision quality.

6.3. Use of the Clinical XAI Guidelines

Our systematic evaluation demonstrated the use of the guide-

lines in the evaluation of XAI in two clinical tasks. Specifically,

if we go back to Alex’s questions in the beginning, to apply the

guidelines on a clinical XAI problem for XAI method selection

or proposal, AI designers like Alex may first talk to their target

clinical users or other stakeholders to understand their AI lit-

eracy (G1 Understandability), their clinical reasoning process

which relates to the interpretation of explanation (G2 Clinical

relevance). Based on the conversation, AI designers may have

a clearer idea about which form(s) of explanation to target.

For the targeted form of explanation such as feature attribu-

tion map, there may be multiple XAI algorithms that can gener-

ate it. To design or select the optimal XAI algorithm of the tar-

get explanation form, AI designers may choose suitable metrics

to assess and optimize XAI methods on the G3 Truthfulness

measure. AI designers may also need to test the truthfulness

metrics for an XAI algorithm on multiple trained AI models to

examine the robustness of XAI method in truly reflecting the

model decision process.

For the XAI method candidates that passed the truthfulness

assessment, to validate whether the explanation is clinically

useful in alerting physicians of AI potential decision flaws, AI

developers may further test such property for the XAI method

candidates (G4 Informative plausibility). To do so, AI design-

ers can ask clinical users about which features or criteria they

are based on to judge the plausibility of explanation, and select

computational metrics and prepare data annotations based on

the plausibility quantification criteria. Then AI developers can

test the correlation between plausibility and decision quality.

AI designers may also need to record the G5 Computational

efficiency of the XAI method candidates to rule out the ones

that do not meet the speed and computational resource require-

ment in clinical deployment.

7. Limitations and future work

The Clinical XAI Guidelines focus on the general clinical re-

quirements for AI explanation. Some task-dependent require-

ments for XAI methods, such as data privacy protection, were

not included in the guidelines. They can serve as add-on re-

quirements in addition to the guideline criteria for specific clin-

ical tasks.

Our evaluation provides a demonstration of the XAI assess-

ment process to align with clinical requirements. We modified

existing methods or proposed ours for the assessment of G3 and

G4, and we do not claim that they are the best evaluation meth-

ods for the general guideline criteria. We list limitations for

each evaluation method below:

For G3 Truthfulness: 1) Cumulative feature removal exper-

iment has a feature independence assumption, which is violated

in image data setting; and there is no consensus on how to set

feature replacement value that can keep the same data distribu-

tion and not introduce additional information (Frye et al., 2021;

Ren et al., 2021). 2) Modality importance correlation exper-

iment only evaluates important features from a modality as a

whole, which is too coarse for MIA settings. 3) When using

synthetic or modified dataset with known ground truth of im-

portant features to evaluate XAI methods, it is unknown how

well we can generalize the conclusion from the synthetic to

real-patient task, given the model and data distribution discrep-

ancies between the two.

For G4 Informative plausibility: the statistical test for in-

formative plausibility requires the number of wrongly predicted

test data to reach a certain sample size for statistical power,

which may be difficult to acquire with a highly accurate model

and small test set. The statistical test does not identify whether

the plausibility measure of correctly and incorrectly predicted

data are well separated, and we had to manually visualize the

data distribution.

Future work may propose novel XAI evaluation methods and

automated, end-to-end, standardized evaluation pipeline corre-

sponding to the guidelines to speed up the clinical development

of XAI techniques.
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8. Conclusion

In this work, we propose the Clinical XAI Guidelines to

support the design and evaluation of clinically-oriented XAI

systems. The proposal of the guidelines was based on dual

understandings of the clinical requirements for explanations

from our physician user study, and technical understanding

from our previous XAI evaluation studies and XAI literature.

The guidelines G1 Understandability and G2 Clinical rele-

vance provide clinical insights for the selection of explanation

forms. Guidelines G3 Truthfulness, G4 Informative plausi-

bility, and G5 Computational efficiency incorporate the clini-

cal requirements on explanation as clear technical objectives to

be optimized for.

Based on the guidelines, we conducted a systematic evalua-

tion on 16 commonly-used heatmap methods. The evaluation

focused on a technically-novel and clinically-pervasive prob-

lem of multi-modal medical image explanation with two clini-

cal tasks of brain tumor grading and knee lesion identification.

We proposed a novel metric, MSFI for multi-modal medical im-

age explanation tasks, to bypass physicians’ manual assessment

of explanation plausibility. The evaluation results showed that

the evaluated heatmap methods failed to fulfill G3 and G4, thus

were not suitable for clinical use. The evaluation demonstrates

the use of Clinical XAI Guidelines in real-world clinical tasks to

facilitate the design and evaluation of clinically-oriented XAI.
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Appendix: Clinical Explainable AI Guidelines

In an effort to guide the design and evaluation of clinical XAI

to meet both clinical and technical requirements, we present a

checklist including five canonical criteria which we believe may

serve as guidelines for developing clinically-oriented XAI. The

guidelines were developed with a collective effort from both

the clinical and technical sides (with complementary expertise

in AI, human factor analysis, and clinical practice). And it

was motivated and supported by findings from our physician

user study, pilot XAI evaluation experiments (Jin et al., 2022,

2021b), and literature. We seek feedback from two physicians

and several researchers on medical image analysis as heuristics

evaluation of the guidelines.

To acquire physicians’ requirements for clinical XAI, we

conducted a physician user study with 30 neurosurgeons to

elicit their clinical requirements by using a clinical XAI proto-

type. The low-fidelity prototype is a clinical decision-support

AI system that provides suggestions from a CNN model to

differentiate lower-grade gliomas from high-grade ones based

on multi-modal MRI. For each AI suggestion, it also shows

a heatmap explanation that highlights the important features

for model prediction. The user study consisted of an online

survey that embedded the XAI prototype and collected physi-

cians’ quantitative rating of the heatmaps, and an optional post-

survey interview where physicians comment on the clinical

XAI system. Five physicians participated in the interview, and

seven physicians provided comments in the survey by answer-

ing open-ended questions. We analyzed the qualitative data col-

lected from interview sessions and open-ended questions in the

survey as the main support to develop the guidelines from the

clinical aspect. The detailed user study findings and method are

in Supplementary Material S1, and its related supporting sec-

tions were referred in the guidelines starting with ‘U’.

Next, we present the Clinical XAI Guidelines, which consist

of five evaluating objectives to optimize a clinical XAI tech-

nique. They are categorized into three considerations on clin-

ical usability, evaluation, and operation. For each objective in

the guidelines, we list its key references from our user study
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or literature. We also analyze examples that follow the objec-

tive and/or counterexamples that violate it. Ways of assessment

are also described to help identify if the objective is met. The

guidelines and their key points are summarized in Table 1.

8.1. Clinical usability considerations

Guideline 1: Understandability.

The form and context of an explanation should be easily un-

derstandable by its clinical users. Users do not need to have

technical knowledge in machine learning, AI, or programming

to interpret the explanation.

• Example:

Physicians find the feature attribution maps (heatmaps)

used in our user study easily understandable. Other ex-

planation formats on medical image analysis tasks such as

similar examples (Cai et al., 2019b), counterfactual exam-

ples , and scoring (linear feature attribution) or rule-based

explanation, as shown in prior physician user studies in

the literature. Jin et al. (2021a) summarized 12 end-user-

friendly explanation forms that do not require technical

knowledge, including feature-based (feature attribution,

feature shape, feature interaction), example-based (similar,

prototypical, and counterfactual example), rule-based ex-

planation (rules, decision tree), and supplementary infor-

mation (input, output, performance, dataset). In addition

to the explanation that reveals the model decision process,

in our user study, physicians also required other informa-

tion that makes the AI model transparent, such as model

performance, training dataset, and prediction confidence

(U3.3: Making AI transparent by providing information on

performance, training dataset, and decision confidence).

An XAI system may use one or a combination of multiple

explanation forms that are friendly to clinical users.

• Counterexample:

A counterexample of understandability is to explain

by visualizing the learned representation of neurons in

DNN (Olah et al., 2017). Although the form of neuron

visualization as images is intuitive to look at, interpreting

the images requires users to have prior knowledge on DNN

model and neuron to understand the context of neuron vi-

sualization.

• Assessment method:

To assess if the understandability objective is met, AI de-

signers can conduct self-assessment on an XAI technique

to inspect its AI knowledge prerequisites, conduct a pilot

physician usability study using low-fidelity prototypes, or

have informal conversations with clinical users to under-

stand their minimal AI literary, and choose proper explana-

tion techniques accordingly. Low-fidelity prototypes such

as sketches can be used as a quick trial-and-error tool and

help clinical users better vision an explanation in a clin-

ical context. As a reference, Jin et al. (2021a) provides

users’ understandability from 32 laypersons on 12 end-

user-friendly explanation forms, and prototyping support

to identify clinical user-friendly explanations. This assess-

ment is usually one-time, conducted at the initial phase of

a project.

Guideline 2: Clinical relevance.

The way physicians use explanations is to inspect the AI-

based evidence provided by the explanation, and incorporate

such evidence in their clinical reasoning process for down-

stream tasks, such as assessing the validity of AI decision,

making a final decision on the case, improving their problem-

solving skills, or making scientific discoveries (U2. Clinical

utility of explainable AI; U1. Clinical utility of AI). To make

XAI clinically useful, the explanation information should be

relevant to physicians’ clinical decision-making pattern, and

can support their clinical reasoning process.

For diagnostic/predictive tasks on clinical images, physi-

cians’ image interpretation process includes two general steps:

1) feature extraction: physicians first perform pattern recogni-

tion to localize key features and identify pathology of these fea-

tures; 2) reasoning on the extracted features: physicians per-

form medical reasoning and construct diagnostic hypotheses

(differential diagnosis) based on the image feature evidence. A
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clinically relevant explanation should provide information cor-

responding to the above process, so that physicians can incor-

porate the explanation information into their medical image in-

terpretation process (U3. Clinical requirements of explainable

AI).

“What (explanation) we get currently, when a radi-

ologist read it, they point out the significant features,

and then they integrate those knowledge, and say, to

my best guess, this is a GBM. And I have the same

expectations of AI (explanation).” (N3)

• Example:

In the user study, physicians visioned the ideal explana-

tions that are clinically relevant (U3.2. Desirable explana-

tion), such as using radiologists’ language, a linear scoring

model, or a rule-based explanation. Those explanations

are composed of clinically meaningful features. And their

form of text, rule, or linear model corresponds to the sec-

ond step of the reasoning process on the extracted features

in the above clinical image interpretation process.

• Counterexample:

The heatmap explanation is not completely clinically rel-

evant, as physicians were perplexed by the highlighted ar-

eas, regardless of whether the areas align with their prior

knowledge or not. Because the heatmap explanation only

performs half of the clinical image interpretation step 1)

of feature localization, it lacks the description of important

features, let alone to perform reasoning on these features

(U3.1. Limitations of existing heatmap explanation).

“Though the heatmap is drawing your eyes to

many different spots, but I feel like I didn’t

understand why my eyes were being driven

to those spots, like why were these very spe-

cific components important? And I think that’s

where all my confusion was.” (N2)

• Assessment method:

A user study with the target clinical users can be conducted

in a formal or informal manner, to understand the clinical

decision-making pattern or workflow for the target task,

and inspect whether the explanation form corresponds to

such pattern, and can help physicians answer their ques-

tions on the rationale of the model decision, how do users

incorporate the explanation information into their decision

process. The above information can be collected via an in-

terview or conversation with users, a field visit and obser-

vation, or a focus group, etc. Low-fidelity prototypes (such

as sketches) (Jin et al., 2021a) of explanation form candi-

dates can be used to elicit more in-context feedback from

clinical users’ communication. The G2 assessment can be

co-conducted with G1 assessment at the initial phase of a

project, and it is also a one-time assessment. As a refer-

ence, our user study finding (Supplementary Material S1,

Section 2 and 3) provides G2 assessment results for the

explanation form of heatmap.

8.2. Evaluation considerations

Guideline 3: Truthfulness.

Explanation should truthfully reflect the model decision pro-

cess. This is the fundamental requirement for a clinically-

oriented explanation, and an explanation method should fulfill

the truthfulness requirement first prior to other evaluation re-

quirements such as G4: Informative plausibility in the guide-

lines.

• Counterexample:

One of the main clinical utilities of explanation is that

clinical users intuitively use explanation plausibility as-

sessment (G4) to verify AI decisions for a case to decide

whether to take or reject the AI suggestion, and calibrate

their trust in AI’s current prediction on the case, or the AI

model in general accordingly (U2.3). Users do so with an

implicit assumption that explanations are the true repre-

sentation of the model decision process. If the truthfulness

criterion is violated, two consequences may occur during

the human assessment on explanation plausibility (G4):
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1. Clinical users may mistakenly reject AI’s correct

suggestion merely for the poor performance of the XAI

method, which shows an unreasonable explanation.

2. If an XAI method is proposed or selected based on ex-

planation plausibility objective only, rather than help clini-

cal users to verify the decision quality, the explanation can

be optimized to deceive clinical users with its seemingly

plausible explanation, despite the wrong prediction from

AI (Critch and Krueger, 2020), as illustrated by the physi-

cian participant N1’s quote:

“If a system made its prediction based upon

these areas (outside the tumor), I would def-

initely not trust that system, but I would be

very reassured that the system is telling me that.

...So I’m less likely to use this model, but I’m

more likely to use a model that does a better job

than this, because I am reassured that when I

see that better model, that I will be able to have

access to that back-end explanation. ” (N1)

• Assessment method:

As stated in (Jacovi and Goldberg, 2020), the truthfulness

or faithfulness objective cannot and should not be assessed

by human judgment on the explanation quality or annota-

tions of the human prior knowledge, because humans do

not know the model’s underlying decision process.

The most common way to assess explanation truthfulness

for feature attribution XAI methods in the literature is to

gradually add or remove features from the most to the least

important ones according to an explanation, and measure

the model performance change (Yin et al., 2021; Yeh et al.,

2019; Hooker et al., 2019; Samek et al., 2017; Lundberg

et al., 2020; Alvarez-Melis and Jaakkola, 2018). Another

way is to construct synthetic evaluation datasets in which

the ground truth knowledge on the model decision pro-

cess from input features to prediction is known and con-

trolled (Doshi-Velez and Kim, 2017; Kim et al., 2018;

Gilpin et al., 2018).

Guideline 4: Informative plausibility.

The ultimate use of an explanation is to be interpreted and

assessed by clinical users. Physicians intuitively use the assess-

ment of explanation plausibility or reasonableness (i.e.: how

reasonable the explanation is based on its agreement with hu-

man prior knowledge on the task) as a way to evaluate AI de-

cision quality, so that to achieve multifaceted clinical utilities

with XAI, including verifying AI’s decisions (U2.3), calibrat-

ing trust in AI (U2.3), ensuring the safe use of AI, resolv-

ing disagreement with AI (U2.2), identifying potential biases,

and making medical discoveries (U2.4). Informative plausibil-

ity aims to validate whether an XAI method can achieve its

utility in helping users to identify potential AI decision flaws

and/or biases, i.e.: a plausible explanation for a right decision,

and an implausible explanation for a wrong decision of AI. G3

Truthfulness is the gatekeeper of G4 Informative plausibility

to warrant the explanation truthfully represents the AI decision

process.

• Example:

In our evaluation, we abstract physicians’ clinical require-

ments on multi-modal medical image explanation (U4.)

into the MSFI metric. It regards the most plausible

heatmap explanation as some maps that can both localize

the important image feature on each imaging modality, and

highlight the important modalities for decision. We eval-

uated how well MSFI metric corresponds to physicians’

assessment by quantitative measure to calculate the corre-

lation between the two, and showcase the visual examples

as a qualitative measure. We then inspect the subsequent

utility of MSFI metric on verifying model decisions, by

measuring its correlation with decision correctness.

• Assessment method:

To test whether explanation plausibility is informative

to help users identify AI decision errors and biases, AI

designers can assess the correlation between AI deci-

sion quality measures (such as model performance, cali-

brated prediction uncertainty, prediction correctness, and
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quantification of biased patterns) with plausibility mea-

sures (Adebayo et al., 2022; Saporta et al., 2021).

Since human assessment of explanation plausibility is usu-

ally subjective and susceptible to biases (U5.2. Bias and

limitation of physicians’ quantitative rating), AI designers

may consider quantifying the plausibility measure by ab-

stracting the human assessment criteria into computation

metrics for a given task. The quantification of human as-

sessment is NOT meant to directly select or optimize XAI

methods for clinical use. Rather, XAI methods should be

optimized for their truthfulness measures (G3). Plausibil-

ity quantification is meant to validate the capability of XAI

methods on their subsequent clinical utility to reveal AI

decision flaws and/or biases, providing their high truthful-

ness score. Quantifying plausibility can make such valida-

tion process automatic, reproducible, standardizable, and

computationally efficient. Similarly, the human annota-

tion of important features according to physicians’ prior

knowledge, which is used to quantify plausibility, cannot

be regarded as the “ground truth” of explanation, because

explanations (given that they fulfill G4 Truthfulness) are

still acceptable even if they are not aligned with human

prior knowledge, but reveal the model decision quality or

help humans to identify new patterns and make medical

discoveries.

Many approaches were proposed to quantify explanation

plausibility measure. These measures calculate the agree-

ment of explanation with human prior knowledge annota-

tions for a given task (Taghanaki et al., 2019; Bau et al.,

2017; Arun et al., 2021). To evaluate whether the quanti-

fied plausibility measure is a good substitute for human as-

sessment, AI designers can use a quantitative measure by

calculating the correlation between the plausibility metric

and clinical users’ assessment score, or use a qualitative

measure by showing physicians different explanations and

their plausibility score, and ask them to judge.

8.3. Operational consideration

Guideline 5: Computational efficiency.

Since many AI-assisted clinical tasks are time-sensitive de-

cisions (U1.2.1: Decision support for time-sensitive cases, and

hard cases), the selection or proposal of clinical XAI techniques

need to consider the computational time and resources. The

wait time for an explanation should not be a bottleneck for the

clinical task workflow.

• Example:

In our evaluation, some gradient-based XAI methods that

use back propagation can generate nearly instant explana-

tion within 10 seconds. This also enables their clinical use

in generating real-time interactive explanations.

• Counterexample:

For XAI techniques that require sampling input-output

pairs, their computational time may be too long for physi-

cians to wait for an explanation. In our evaluation, it took

about 30 minutes for Shapley Value Sampling method to

generate one heatmap on a typical desktop computer with

GPU.

• Assessment method:

AI designers can record the computational time and re-

sources for XAI method to assess whether the requirement

on computational efficiency is met. AI designers may also

need to talk to clinical users to understand whether their

clinical task includes time-sensitive decisions, and their

maximum tolerable waiting time for an explanation on the

task. For some XAI methods, the computational time de-

pends on the settings of some specific parameters, such as

the number and size of feature masks to generate the per-

turbed samples, the number of samples. AI designers need

to identify the optimal set of parameters to balance expla-

nation accuracy and computational efficiency.
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